Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical control of single hole spins in nanowire quantum dots

Abstract

The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits)1. Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge1,2,3,4. Hole spins in III–V semiconductors have unique properties, such as a strong spin–orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control5,6,7,8 and longer coherence times8,9,10,11,12. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques10,11,12, but the development of hole–spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges13. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ambipolar transport in an InSb nanowire.
Figure 2: Gate tuning between electron transport and hole quantum dot.
Figure 3: Gate-defined few-hole double quantum dot.
Figure 4: Electric-dipole spin resonance and hole g-factor anisotropy.
Figure 5: Hole spin blockade for strong interdot coupling.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  3. Hanson, R., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  4. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  5. Manaselyan, A. & Chakraborty, T. Enhanced Rashba effect for hole states in a quantum dot. Europhys. Lett. 88, 17003–17007 (2009).

    Article  Google Scholar 

  6. Katsaros, G. et al. Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nature Nanotech. 5, 458–464 (2010).

    Article  CAS  Google Scholar 

  7. Kloeffel, C., Trif, M. & Loss, D. Strong spin–orbit interaction and helical hole states in Ge/Si nanowires. Phys. Rev. B 84, 195314 (2011).

    Article  Google Scholar 

  8. Hu, Y. J., Kuemmeth, F., Lieber, C. M. & Marcus, C. M. Hole spin relaxation in Ge–Si core–shell nanowire qubits. Nature Nanotech. 7, 47–50 (2012).

    Article  CAS  Google Scholar 

  9. Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  Google Scholar 

  10. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  CAS  Google Scholar 

  11. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  CAS  Google Scholar 

  12. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  CAS  Google Scholar 

  13. Grbic, B. et al. Hole transport in p-type GaAs quantum dots and point contacts. AIP Conf. Proc. 893, 777–778 (2007).

    Article  CAS  Google Scholar 

  14. Madelung, O. Semiconductors: Data Handbook 3rd edn (Springer, 2004).

    Book  Google Scholar 

  15. Nilsson, H. A. et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009).

    Article  CAS  Google Scholar 

  16. Nilsson, H. A. et al. InSb nanowire field-effect transistors and quantum-dot devices. IEEE J. Sel. Top. Quant. 17, 907–914 (2011).

    Article  CAS  Google Scholar 

  17. Plissard, S. R. et al. From InSb nanowires to nanocubes: looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012).

    Article  CAS  Google Scholar 

  18. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  19. Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).

    Article  CAS  Google Scholar 

  20. Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).

    Article  CAS  Google Scholar 

  21. Escott, C. C., Zwanenburg, F. A. & Morello, A. Resonant tunnelling features in quantum dots. Nanotechnology 21, 274018 (2010).

    Article  CAS  Google Scholar 

  22. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

    Book  Google Scholar 

  23. Rashba, E. I. Theory of electric dipole spin resonance in quantum dots: mean field theory with Gaussian fluctuations and beyond. Phys. Rev. B 78, 195302 (2008).

    Article  Google Scholar 

  24. Bulaev, D. V. & Loss, D. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).

    Article  Google Scholar 

  25. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).

    Article  CAS  Google Scholar 

  26. Nadj-Perge, S. et al. Disentangling the effects of spin–orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305(R) (2010).

    Article  Google Scholar 

  27. Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301(R) (2009).

    Article  Google Scholar 

  28. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    Article  CAS  Google Scholar 

  29. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole–nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    Article  CAS  Google Scholar 

  30. Csontos, D., Brusheim, P., Zulicke, U. & Xu, H. Q. Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings. Phys. Rev. B 79, 155323 (2009).

    Article  Google Scholar 

  31. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).

    Article  CAS  Google Scholar 

  32. Mao, L., Gong, M., Dumitrescu, E., Tewari, S. & Zhang, C. Hole-doped semiconductor nanowire on top of an s-wave superconductor: a new and experimentally accessible system for Majorana fermions. Phys. Rev. Lett. 108, 177001 (2012).

    Article  Google Scholar 

  33. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L.M.K. Vandersypen and G. Bauer for helpful discussions and comments. This work has been supported by the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO) and the European Research Council (ERC). V.S.P. acknowledges support from NWO through a VENI grant.

Author information

Authors and Affiliations

Authors

Contributions

V.S.P., S.N., S.M.F., J.W.G.B. and I.W. performed the measurements. V.S.P., S.N., S.M.F. and J.W.G.B. analysed the data. V.S.P., S.N. and J.W.G.B. fabricated the devices. S.R.P. and E.P.A.M.B. provided the nanowires. L.P.K. supervised the project. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to V. S. Pribiag or L. P. Kouwenhoven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1049 kb)

Supplementary zip

Supplementary zip (ZIP 8603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pribiag, V., Nadj-Perge, S., Frolov, S. et al. Electrical control of single hole spins in nanowire quantum dots. Nature Nanotech 8, 170–174 (2013). https://doi.org/10.1038/nnano.2013.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing