Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic quantum ratchet effect in graphene

Abstract

A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations1. This so-called ratchet effect2 has fascinating ramifications in engineering and natural sciences3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. Graphene19 is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dirac electrons drive a ratchet.
Figure 2: Temperature dependence of current density jx measured in sample A.
Figure 3: Sensitivity of ratchet current to a.c. electric field direction.
Figure 4: Magnetic field dependence of the current density jy(|By|).

Similar content being viewed by others

References

  1. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  Google Scholar 

  2. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 1 (Addison-Wesley, 1966).

  3. Hänggi, P., Marchesoni, F. & Nori, F. Brownian motors. Annal. Physik 14, 1–3 (2005).

    Article  Google Scholar 

  4. Linke, H. et al. Experimental tunneling ratchets. Science 286, 2314–2317 (1999).

    Article  CAS  Google Scholar 

  5. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  6. Bermudez, V. et al. Influencing intramolecular motion with an alternating electric field. Nature 406, 608–611 (2000).

    Article  CAS  Google Scholar 

  7. Serreli, V., Lee, C., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  Google Scholar 

  8. Mahmud, G. et al. Directing cell motions on micropatterned ratchets. Nature Phys. 5, 606–612 (2009).

    Article  CAS  Google Scholar 

  9. Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003).

    Article  CAS  Google Scholar 

  10. Togawa, Y. et al. Direct observation of rectified motion of vortices in a niobium superconductor. Phys. Rev. Lett. 95, 087002 (2005).

    Article  Google Scholar 

  11. Cole, D. et al. Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives. Nature Mater. 5, 305–311 (2006).

    Article  CAS  Google Scholar 

  12. Roeling, E. M. et al. Organic electronic ratchets doing work. Nature Mater. 10, 51–55 (2011).

    Article  CAS  Google Scholar 

  13. Salger, T. et al. Directed transport of atoms in a Hamiltonian quantum ratchet. Science 326, 1241–1243 (2009).

    Article  CAS  Google Scholar 

  14. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 8, 143–146 (2012).

    Article  CAS  Google Scholar 

  15. Olbrich, P. et al. Ratchet effects induced by terahertz radiation in heterostructures with a lateral periodic potential. Phys. Rev. Lett. 103, 090603 (2009).

    Article  CAS  Google Scholar 

  16. O'Hare, A., Kusmartsev, F. V. & Kugel, K. I. A stable ‘flat’ form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12, 1045–1052 (2012).

    Article  CAS  Google Scholar 

  17. Smirnov, S., Bercioux, D., Grifoni, M. & Richter, K. Quantum dissipative Rashba spin ratchets. Phys. Rev. Lett. 100, 230601 (2008).

    Article  Google Scholar 

  18. Costache, M. V. & Valenzuela, S. O. Experimental spin ratchet. Science 330, 1645–1648 (2010).

    Article  CAS  Google Scholar 

  19. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  20. Das Sarma, S., Adam, S., Huang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  CAS  Google Scholar 

  21. Rozhkov, A. V., Giavaras, G., Bliokh, Y. P., Freilikher, V. & Nori, F. Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011).

    Article  CAS  Google Scholar 

  22. Ganichev, S. D. & Prettl, W. Intense Terahertz Excitation of Semiconductors (Oxford Univ. Press, 2006).

  23. Ganichev, S. D. Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields. Physica B 273–274, 737–742 (1999).

    Article  Google Scholar 

  24. Schneider, P. et al. Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption. J. Appl. Phys. 96, 420–424 (2004).

    Article  CAS  Google Scholar 

  25. Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotech. 5, 186–189 (2010).

    Article  CAS  Google Scholar 

  26. Karch, J. et al. Dynamic Hall effect driven by circularly polarized light in a graphene layer. Phys. Rev. Lett. 97, 227402 (2010).

    Article  Google Scholar 

  27. Karch, J. et al. Terahertz radiation driven chiral edge currents in graphene. Phys. Rev. Lett. 107, 276601 (2011).

    Article  CAS  Google Scholar 

  28. Ganichev, S. D., Ivchenko, E. L. & Prettl, W. Photogalvanic effects in quantum wells. Physica E 14, 166–171 (2002).

    Article  Google Scholar 

  29. Lara-Avila, S. et al. Non-volatile photochemical gating of an epitaxial graphene. Adv. Mater. 23, 878–882 (2011).

    Article  CAS  Google Scholar 

  30. Falko, V. I. Rectifying properties of 2D inversion layers in a parallel magnetic field. Fiz. Tvedr. Tela 31, 29–32 (1989) [Sov. Phys. Solid State, 561–563 (1989)].

    Google Scholar 

  31. Tarasenko, S. A. Electron scattering in quantum wells subjected to an in-plane magnetic field. Phys. Rev. B 77, 085328 (2008).

    Article  Google Scholar 

  32. Tarasenko, S. A. Direct current driven by ac electric field in quantum wells. Phys. Rev. B 83, 035313 (2011).

    Article  Google Scholar 

  33. Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin–orbit coupling in graphene. Phys. Rev. B 82, 245412 (2010).

    Article  Google Scholar 

  34. Yazyev, O. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).

    Article  Google Scholar 

  35. Castro Neto, A. H. & Guinea, F. Impurity induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 206804 (2009).

    Article  Google Scholar 

  36. Ertler, C., Konschuh, S., Gmitra, M. & Fabian, J. Electron spin relaxation in graphene: the role of the substrate. Phys. Rev. B 80, 041405(R) (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V.V. Bel'kov and E.L. Ivchenko for fruitful discussions. The authors also acknowledge support from the German Research Foundation (DFG) through projects SPP 1459, GRK 1570 and SFB 689, the European Union through ConceptGraphene, a linkage Grant of the International Bureau of the Federal Ministry of Education and Research (BMBF) at the German Aerospace Center (DLR), the Russian Foundation for Basic Research (RFBR), the Russian Federation President Grant MD-2062.2012.2, and the ‘Dynasty’ Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.D.G. and S.A.T. conceived the experiments. C.D., P.O., J.Ka., M.H., F.M. and S.D.G. designed the experimental set-up and performed the measurements. C.D., P.O., S.D.G. and S.A.T. analysed the data. R.Y., S.L-A., S.K., J.Ko., P.M.A., M.W. and R.V. grew, fabricated and characterized samples. S.A.T. developed the microscopic theory. J.F. and M.G. performed the first-principles calculations. S.D.G., S.A.T., J.F., C.D., P.O. and M.G. co-wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to S. D. Ganichev.

Supplementary information

Supplementary information

Supplementary information (PDF 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, C., Tarasenko, S., Olbrich, P. et al. Magnetic quantum ratchet effect in graphene. Nature Nanotech 8, 104–107 (2013). https://doi.org/10.1038/nnano.2012.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing