Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

Abstract

Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene1,2,3. Drugs that target tumours carrying this mutation have recently entered the clinic4,5,6,7. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods8. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl–1 of RNA material, without prior PCR amplification and use of labels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of microcantilever array functionalization and measurement.
Figure 2: Compressive surface stress from hybridization experiments with PCR-amplified BRAF sequences.
Figure 3: Detection of mutated versus wild-type BRAF in total RNA samples.
Figure 4: Analysis of RNA samples from different BRAF mutated and wild-type tumour cells.

References

  1. Roskoski, R. RAF protein-serine/threonine kinases: structure and regulation. Biochem. Biophys. Res. Commun. 399, 313–317 (2010).

    Article  CAS  Google Scholar 

  2. Gray-Schopfer, V. C., da Rocha Dias, S. & Marais, R. The role of B-RAF in melanoma. Cancer Metastasis Rev. 24, 165–183 (2005).

    Article  CAS  Google Scholar 

  3. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  4. Ribas, A. & Flaherty, K. T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nature Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  Google Scholar 

  5. Flaherty, K. T. Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clin. Exp. Metastasis 29, 841–846 (2012).

    Article  CAS  Google Scholar 

  6. Ravnan, M. C. & Matalka, M. S. Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin. Ther. 34, 1474–1486 (2012).

    Article  CAS  Google Scholar 

  7. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  Google Scholar 

  8. Halait, H. et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor Vemurafenib in metastatic melanoma. Diagn. Mol. Pathol. 21, 1–8 (2012).

    Article  CAS  Google Scholar 

  9. Pratilas, C. A., Xing, F. & Solit, D. B. Targeting oncogenic BRAF in human cancer. Therapeut. Kinase Inhib. 355, 83–98 (2012).

    Article  CAS  Google Scholar 

  10. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  Google Scholar 

  11. Hinselwood, D. C., Abrahamsen, T. W. & Ekstrøm, P. O. BRAF mutation detection and identification by cycling temperature capillary electrophoresis. Electrophoresis 26, 2553–2561 (2005).

    Article  CAS  Google Scholar 

  12. Wu, C. C. et al. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens. Bioelectr. 25, 820–825 (2009).

    Article  CAS  Google Scholar 

  13. Fang, Z. & Kelley, S. O. Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal. Chem. 81, 612–617 (2009).

    Article  CAS  Google Scholar 

  14. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  15. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    Article  CAS  Google Scholar 

  16. Biswal, S. L., Raorane, D., Chaiken, A., Birecki, H. & Majumdar, A. Nanomechanical detection of DNA melting on microcantilever surfaces. Anal. Chem. 78, 7104–7109 (2006).

    Article  CAS  Google Scholar 

  17. Mertens, J. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotech. 3, 301–307 (2008).

    Article  CAS  Google Scholar 

  18. Backmann, N. et al. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl Acad. Sci. USA 102, 14587–14592 (2005).

    Article  CAS  Google Scholar 

  19. Johansson, A., Blagoi, G. & Boisen, A. Polymeric cantilever-based biosensors with integrated readout. Appl. Phys. Lett. 89, 173505 (2006).

    Article  Google Scholar 

  20. Braun, T. et al. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys. J. 90, 2970–2977 (2006).

    Article  CAS  Google Scholar 

  21. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  22. Lang, H. P., Hegner, M. & Gerber, Ch. Cantilever array sensors. Mater. Today 8, 30–36 (April, 2005).

    Article  CAS  Google Scholar 

  23. Yang, M., Yau, H. C. M. & Chan, H. L. Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface. Langmuir 14, 6121–6129 (1998).

    Article  CAS  Google Scholar 

  24. Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M. & Corn, R. M. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73, 1–7 (2001).

    Article  CAS  Google Scholar 

  25. Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA 83, 3746–3750 (1986).

    Article  CAS  Google Scholar 

  26. Barone, F., Cellai, L., Matzeu, M., Mazzei, F. & Pedone, F. DNA, RNA and hybrid RNA–DNA oligomers of identical sequence: structural and dynamic differences. Biophys. Chem. 86, 37–47 (2000).

    Article  CAS  Google Scholar 

  27. Stuart, D. & Sellers, W. R. Linking somatic genetic alterations in cancer to therapeutics. Curr. Opin. Cell Biol. 21, 304–310 (2009).

    Article  CAS  Google Scholar 

  28. Fritz, J. et al. Stress at the solid–liquid interface of self-assembled monolayers on gold investigated with a nanomechanical sensor. Langmuir 16, 9694–9696 (2000).

    Article  CAS  Google Scholar 

  29. Valsesia, A. et al. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma. PLoS ONE 6, e18369 (2011).

    Article  CAS  Google Scholar 

  30. Rimoldi, D. et al. Lack of BRAF mutations in uveal melanoma. Cancer Res. 63, 5712–5715 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ongoing support from M. Despont and U. Drechsler (IBM Research GmbH) in providing cantilever arrays. The authors also thank the National Center of Competence for Nanoscale Science (NCCR Nano), the Swiss Nano Institute (SNI), the NanoTera Program, the Cleven Foundation and the Swiss National Science Foundation for financial support. K. Muehlethaler is thanked for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

F.H., D.R. and C.G. conceived the study. F.H. and D.R. designed the experiments and interpreted the data. F.H. performed and analysed the experiments. D.R. prepared DNA/RNA samples and cell lines. H.P.L. gold-coated the cantilever arrays. F.H., D.R., H.P.L., C.G. and N.B. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to F. Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, F., Lang, H., Backmann, N. et al. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nature Nanotech 8, 125–129 (2013). https://doi.org/10.1038/nnano.2012.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing