Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detecting the translocation of DNA through a nanopore using graphene nanoribbons

Abstract

Solid-state nanopores can act as single-molecule sensors and could potentially be used to rapidly sequence DNA molecules. However, nanopores are typically fabricated in insulating membranes that are as thick as 15 bases, which makes it difficult for the devices to read individual bases. Graphene is only 0.335 nm thick (equivalent to the spacing between two bases in a DNA chain) and could therefore provide a suitable membrane for sequencing applications. Here, we show that a solid-state nanopore can be integrated with a graphene nanoribbon transistor to create a sensor for DNA translocation. As DNA molecules move through the pore, the device can simultaneously measure drops in ionic current and changes in local voltage in the transistor, which can both be used to detect the molecules. We examine the correlation between these two signals and use the ionic current measurements as a real-time control of the graphene-based sensing device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics and characterization of the GNR transistor–nanopore measuring set-up.
Figure 2: Fabrication of a solid-state nanopore with a GNR transistor.
Figure 3: Simultaneous detection of DNA translocations in ionic and graphene current.
Figure 4: Event correlation graphs display events detected both in ionic and graphene current.
Figure 5: Equivalent circuit diagrams for a GNR nanopore device.

Similar content being viewed by others

References

  1. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  2. Li, J. L., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    Article  CAS  Google Scholar 

  3. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    Article  CAS  Google Scholar 

  4. Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    Article  CAS  Google Scholar 

  5. Dekker, C. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  Google Scholar 

  6. Skinner, G. M., van den Hout, M., Broekmans, O., Dekker, C. & Dekker, N. H. Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett. 9, 2953–2960 (2009).

    Article  CAS  Google Scholar 

  7. Van den Hout, M., Krudde, V., Janssen, X. J. A. & Dekker, N. H. Distinguishable populations report on the interactions of single DNA molecules with solid-state nanopores. Biophys. J. 99, 3840–3848 (2010).

    Article  CAS  Google Scholar 

  8. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotech. 5, 807–814 (2010).

    Article  CAS  Google Scholar 

  9. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  CAS  Google Scholar 

  10. Trepagnier, E. H., Radenovic, A., Sivak, D., Geissler, P. & Liphardt, J. Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7, 2824–2830 (2007).

    Article  CAS  Google Scholar 

  11. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  12. Peng, H. B. & Ling, X. S. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009).

    Article  Google Scholar 

  13. Taniguchi, M., Tsutsui, M., Yokota, K. & Kawai, T. Fabrication of the gating nanopore device. Appl. Phys. Lett. 95, 123701 (2009).

    Article  Google Scholar 

  14. McNally, B. et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–2244 (2010).

    Article  CAS  Google Scholar 

  15. Tsutsui, M. et al. Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, 46 (2011).

    Article  Google Scholar 

  16. Xie, P., Xiong, Q. H., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire–nanopore sensors. Nature Nanotech. 7, 119–125 (2012).

    Article  CAS  Google Scholar 

  17. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  18. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  19. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    Article  CAS  Google Scholar 

  20. Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    Article  CAS  Google Scholar 

  21. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    Article  CAS  Google Scholar 

  22. Postma, H. W. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010).

    Article  CAS  Google Scholar 

  23. Min, S. K., Kim, W. Y., Cho, Y. & Kim, K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotech. 6, 162–165 (2011).

    Article  CAS  Google Scholar 

  24. Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    Article  CAS  Google Scholar 

  25. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  26. Ang, P. K., Chen, W., Wee, A. T. S. & Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008).

    Article  CAS  Google Scholar 

  27. Smeets, R. M. M., Dekker, N. H. & Dekker, C. Low-frequency noise in solid-state nanopores. Nanotechnology 20, 095501 (2009).

    Article  CAS  Google Scholar 

  28. Kuan, A. T. & Golovchenko, J. A. Nanometer-thin solid-state nanopores by cold ion beam sculpting. Appl. Phys. Lett. 100, 213104 (2012).

    Article  Google Scholar 

  29. Dimitrov, V. et al. Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology 21, 065502 (2010).

    Article  CAS  Google Scholar 

  30. Venkatesan, B. M., Shah, A. B., Zuo, J. M. & Bashir, R. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv. Funct. Mater. 20, 1266–1275 (2010).

    Article  CAS  Google Scholar 

  31. Raillon, C. et al. Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Lett. 12, 1157–1164 (2012).

    Article  CAS  Google Scholar 

  32. Raillon, C., Granjon, P., Graf, M., Steinbock, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).

    Article  CAS  Google Scholar 

  33. Van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys. 5, 347–351 (2009).

    Article  CAS  Google Scholar 

  34. Heller, I. et al. Comparing the weak and strong gate-coupling regimes for nanotube and graphene transistors. Phys. Status Solidi 3, 190–192 (2009).

    CAS  Google Scholar 

  35. Harrell, C. C. et al. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22, 10837–10843 (2006).

    Article  CAS  Google Scholar 

  36. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotech. 5, 160–165 (2010).

    Article  CAS  Google Scholar 

  37. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  38. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  39. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  40. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  41. Ye, Y. et al. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale 3, 1477–1481 (2011).

    Article  CAS  Google Scholar 

  42. Vlassarev, D. M. & Golovchenko, J. A. Trapping DNA near a solid-state nanopore. Biophys. J. 103, 352–356 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Research Council (grant no. 259398, PorABEL: Nanopore Integrated Nanoelectrodes for Biomolecular Manipulation and Sensing). F.T. was partially financed by an FP7 nanoDNA sequencing grant. C.R. was financed by a grant from the Swiss SystemsX.ch initiative (IPhD), evaluated by the Swiss National Science Foundation. M.B. and D.K. were supported by grants from the Swiss National Science Foundation (grants nos 122044 and 135046). The authors thank the Centre Interdisciplinaire de Microscopie Electronique (CIME) at EPFL for access to electron microscopes, and special thanks go to D.T.L. Alexander for providing training and technical assistance with TEM. Device fabrication was partially carried out at the EPFL Center for Micro/Nanotechnology (CMi). The authors thank A. Ionescu and Nanolab (EPFL) for access to Advance Design System (ADS) software and A. Bazigos for help with ADS. Thanks go to V. Russo and C.S. Casari of the Politecnico di Milano for Raman spectroscopy on graphene, P. Granjon (Grenoble Institute of Technology) for help with the crosstalk analysis, and all LBEN laboratory members for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.T., A.K. and A.R. designed the research. F.T. and A.R. designed and built the measurement set-up. F.T. fabricated and characterized devices, performed experiments and analysed the data. K.L. performed experiments and analysed the data. C.R. and M.B. worked on the first generation of devices based on exfoliated graphene. S.K. performed COMSOL modelling. M.T. and D.K. performed CVD graphene growth and transfer. F.T., A.K. and A.R. wrote the paper.

Corresponding author

Correspondence to A. Radenovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traversi, F., Raillon, C., Benameur, S. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech 8, 939–945 (2013). https://doi.org/10.1038/nnano.2013.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing