Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode

An Erratum to this article was published on 07 November 2013

This article has been updated

Abstract

Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal–ferroelectric–semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM and in-plane X-ray diffraction of BaTiO3/SrTiO3/silicate/SiO2 stacks.
Figure 2: Strain analysis in a 16 nm BaTiO3/SrTiO3/amorphous interfacial layer (silicate and SiO2) stack.
Figure 3: Strain analysis in a 40 nm BaTiO3/SrTiO3/amorphous interfacial layer (silicate and SiO2) stack.
Figure 4: Schematic representation of the domain structure.
Figure 5: Atomic force microscopy and piezoresponse images of BaTiO3 films of different thicknesses.
Figure 6: Hysteresis loops measured by PFM for BaTiO3 films of different thicknesses.

Similar content being viewed by others

Change history

  • 08 October 2013

    In the version of this Article originally published, the scale bars in Fig. 3 were incorrectly sized. This has now been corrected in the HTML and PDF versions.

References

  1. Mc Kee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).

    Article  CAS  Google Scholar 

  2. Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).

    Article  CAS  Google Scholar 

  3. Scott, J. F. in Ferroelectric Memories Ch. 2,12 (Springer, 2000).

    Book  Google Scholar 

  4. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  CAS  Google Scholar 

  5. Zhirnov, V. V. & Cavin, R. K. Negative capacitance to the rescue? Nature Nanotech. 3, 77–78 (2008).

    Article  CAS  Google Scholar 

  6. Rusu, A., Salvatore, G. A., Jimenez, D. & Ionescu, A. M. Metal–ferroelectric–metal–oxide–semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification. Proc. IEDM 16.3.1–16.3.4 (2010).

  7. Batra, I. P., Wurfel, P. & Silverman, B. D. Depolarization field and stability considerations in thin ferroelectric films. J. Vac. Sci. Technol. 10, 687–692 (1973).

    Article  CAS  Google Scholar 

  8. Batra, I. P., Wurfel, P. & Silverman, B. D. Phase transition, stability and depolarization field in ferroelectric thin films. Phys. Rev. B 8, 3257 (1973).

    Article  CAS  Google Scholar 

  9. Ito, D., Fujimura, N., Yoshimura, T. & Ito, T. Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563–5567 (2003).

    Article  CAS  Google Scholar 

  10. Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Article  Google Scholar 

  11. Vaithyanathan, V. et al. c-Axis oriented epitaxial BaTiO3 films on (001)Si. J. Appl. Phys. 100, 024108 (2006).

    Article  Google Scholar 

  12. Niu, F. & Wessels, B. W. Epitaxial growth and strain relaxation of BaTiO3 thin films on SrTiO3 buffered (001) Si by molecular beam epitaxy. J. Vac. Sci. Technol. B 25, 1053–1057 (2007).

    Article  CAS  Google Scholar 

  13. Niu, G. et al. Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectron. Eng. 88, 1232–1235 (2011).

    Article  CAS  Google Scholar 

  14. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  CAS  Google Scholar 

  15. Rouvière, J. L. & Sarigiannidou, E. Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 1–17 (2005).

    Article  Google Scholar 

  16. Jia, C-L. et al. Unit-cell scale mappping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater. 6, 64–69 (2007).

    Article  CAS  Google Scholar 

  17. Kolpak, A. M. et al. Interface-induced polarization and inhibition of ferroelectricity in epitaxial SrTiO3/Si. Phys. Rev. Lett. 105, 217601 (2010).

    Article  CAS  Google Scholar 

  18. Gruverman, A. & Kholkin, A. Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006).

    Article  CAS  Google Scholar 

  19. Balke, N., Bdikin, I., Kalinin, S. V. & Kholkin, A. L. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009).

    Article  CAS  Google Scholar 

  20. Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelec. Freq. Control 53, 2226–2252 (2006).

    Article  Google Scholar 

  21. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  22. Sai, N., Kolpak, M. & Rappe, A. M. Ferroelectricity in ultrathin peorvskite films. Phys. Rev. B 72, 020101 (R) (2005).

    Article  Google Scholar 

  23. Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

    Article  CAS  Google Scholar 

  24. Paul, J., Nishimatsu, T., Kawazoe, Y. & Waghmare, U. V. Ferroelectric phase transitions in ultrathin films of BaTiO3 . Phys. Rev. Lett. 99, 077601 (2007).

    Article  Google Scholar 

  25. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  26. Cross, L. E. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).

    Article  CAS  Google Scholar 

  27. Garcia, R., Martinez, R. V. & Martinez, J. Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006).

    Article  CAS  Google Scholar 

  28. Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and ‘real’ hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006).

    Article  Google Scholar 

  29. Alexe, M., Harnagea, C., Hesse, D. & Gösele, U. Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl. Phys. Lett. 79, 242–244 (2001).

    Article  CAS  Google Scholar 

  30. Lu, H. et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv. Mater. 24, 1209–1216 (2012).

    Article  CAS  Google Scholar 

  31. Streiffer, S. K. et al. Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002).

    Article  CAS  Google Scholar 

  32. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  CAS  Google Scholar 

  33. Tenne, D. A. et al. Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. Phys. Rev. Lett. 103, 177601 (2009).

    Article  CAS  Google Scholar 

  34. Jia, C-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

    Article  CAS  Google Scholar 

  35. Zubko, P. et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 12, 2846–2851 (2012).

    Article  CAS  Google Scholar 

  36. Wei, Y. et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films. J. Vac. Sci. Technol. B 20, 1402–1405 (2002).

    Article  CAS  Google Scholar 

  37. Choi M. et al. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy. J. Appl. Phys. 111, 064112 (2012).

    Article  Google Scholar 

  38. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  Google Scholar 

  39. Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44, 464006 (2011).

    Article  Google Scholar 

  40. Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702–073711 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

C.D. acknowledges IBM for her Visiting Scientist position and CNRS for her detachment. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). PFM experiments (T.M.A. and S.V.K.) were performed at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is sponsored by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy. The work in Austin was supported by the National Science Foundation (grant no. DMR-0548182) and the Office of Naval Research (grant no. N000 14-10-1-0489).

Author information

Authors and Affiliations

Authors

Contributions

C.D., M.M.F. and V.N. devised, designed and organized the work. A.P. and A.D designed and performed the work related to the growth of the samples. T.M.A. and S.V.K. designed and performed the PFM experiments and analysed the PFM data. C.D. and J.J.S. performed the X-ray diffraction experiments and analysed the data. C.D. and E.C. performed the electrical measurements and analysed the data. J.B. performed the TEM experiments and analysed the data by geometrical phase analysis. C.D. contributed to the GPA analysis. All authors contributed to the interpretation of the data and to the discussions.

Corresponding authors

Correspondence to Catherine Dubourdieu, Martin M. Frank or Vijay Narayanan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubourdieu, C., Bruley, J., Arruda, T. et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nature Nanotech 8, 748–754 (2013). https://doi.org/10.1038/nnano.2013.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing