Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Printing colour at the optical diffraction limit

Abstract

The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of 100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability1,2,3,4,5,6. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography7,8, and could be useful in making microimages for security, steganography9, nanoscale optical filters6,10,11,12 and high-density spectrally encoded optical data storage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principle and fabrication process for high-resolution plasmonic colour printing.
Figure 2: Optical micrographs and spectral analyses of arrays of nanostructures with varying diameters D and gaps g.
Figure 3: Numerical simulation for structures of the same periodicity (D + g = 120 nm).
Figure 4: Full-colour image printing and resolution test patterns.

References

  1. Finlayson, C. E. et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv. Mater. 23, 1540–1544 (2011).

    Article  CAS  Google Scholar 

  2. Haverinen, H. M., Myllylae, R. A. & Jabbour, G. E. Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 94, 073108 (2009).

    Article  Google Scholar 

  3. Kim, T-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  4. Lee, S. Y. et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt. Express 19, 23818–23830 (2011).

    Article  CAS  Google Scholar 

  5. Ozaki, M., Kato, J. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

    Article  CAS  Google Scholar 

  6. Xu, T., Wu, Y-K., Kaplan, A. F., Ok, J. G. & Guo, J. L. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).

    Article  CAS  Google Scholar 

  7. Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).

    Article  CAS  Google Scholar 

  8. Kustandi, T. S., Low, H. Y., Teng, J. H., Rodriguez, I. & Yin, R. Mimicking domino-like photonic nanostructures on butterfly wings. Small 5, 574–578 (2009).

    Article  CAS  Google Scholar 

  9. Javidi, B. Optical and Digital Techniques for Information Security (Springer, 2005).

    Book  Google Scholar 

  10. Chen, Q. & Cumming, D. R. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056–14062 (2010).

    Article  CAS  Google Scholar 

  11. Inoue, D. et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011).

    Article  Google Scholar 

  12. Xu, T., Wu, Y-K., Luo, X. & Guo, J. L. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun. 1, 1–5 (2010).

    CAS  Google Scholar 

  13. Abbe, E. A contribution to the theory of the microscope and the nature of microscopic vision. Proc. Bristol Nat. Soc. 1, 200–261 (1874).

    Google Scholar 

  14. Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331 (2006).

    Article  CAS  Google Scholar 

  15. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

  16. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  17. Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    Article  CAS  Google Scholar 

  18. Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161–164 (2008).

    Article  CAS  Google Scholar 

  19. Liu, H. & Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008).

    Article  CAS  Google Scholar 

  20. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  21. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  22. Li, W-D., Ding, F., Hu, J. & Chou, S. Y. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt. Express 19, 3925–3936 (2011).

    Article  Google Scholar 

  23. Li, W-D., Hu, J. & Chou, S. Y. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098–21108 (2011).

    Article  CAS  Google Scholar 

  24. Liu, Y. J. et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2011).

    Article  Google Scholar 

  25. Caldwell, J. D. et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5, 4046–4055 (2011).

    Article  CAS  Google Scholar 

  26. Chanda, D. et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nature Commun. 2, 1–7 (2011).

    Article  Google Scholar 

  27. Wells, S. M., Polemi, A., Lavrik, N. V., Shuford, K. L. & Sepaniak, M. J. Efficient disc on pillar substrates for surface enhanced Raman spectroscopy. Chem. Commun. 47, 3814–3816 (2011).

    Article  CAS  Google Scholar 

  28. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  29. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  Google Scholar 

  30. Mie, G. Contributions to the optical characteristis of turbid tubes, particularly of colloidal metal solutions (beitraege zur optik trueber Medien, speziell kolloidaler Metalloesungen). Ann. Phys. 25, 377–445 (1908).

    Article  CAS  Google Scholar 

  31. Yang, J. K. W., Duan, H., Law, J. B. K., Low, H. Y. & Cord, B. Miniaturization of grayscale images. J. Vac. Sci. Technol. B 29, 06F313 (2011).

    Article  Google Scholar 

  32. Yang, J. K. W. & Berggren, K. K. Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol., B 25, 2025–2029 (2007).

    Article  CAS  Google Scholar 

  33. Palik, E. D. Handbook of Optical Constants of Solids Vol. 1, 386–350 (Elsevier, 1998).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (A*STAR) Young Investigatorship (grant no. 0926030138) and SERC (grant no. 092154099). The work made use of the SERC nano Fabrication, Processing and Characterization (SnFPC) facilities in IMRE. The authors thank S.H. Goh, I.Y. Phang, J. Deng and V.S.F. Lim for technical assistance, and M. Asbahi, M. Bosman, W.P. Goh and K.T.P. Lim (IMRE) and K.K. Berggren (MIT) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.K., H.D. and J.K.W.Y. conceived the ideas and designed the experiments. K.K., H.D. and J.K.W.Y. fabricated and characterized the samples. R.S.H., S.C.W.K. and J.N.W. performed numerical simulations. All authors analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Joel K. W. Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K., Duan, H., Hegde, R. et al. Printing colour at the optical diffraction limit. Nature Nanotech 7, 557–561 (2012). https://doi.org/10.1038/nnano.2012.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing