Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shear-stress sensitive lenticular vesicles for targeted drug delivery

Abstract

Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of phospholipids.
Figure 2: Confocal micrographs of GUVs and cryo-TEM micrographs of LUVET100s formulated from Pad–PC–Pad.
Figure 3: Release of carboxyfluorescein from vesicles made of phospholipids 1 to 5.
Figure 4: Monolayer studies of Pad–PC–Pad.
Figure 5: Release of entrapped fluorescent dye after passage through an extracorporeal pump flow set-up.
Figure 6: Fluorescence release patterns of EggPC vesicles with 10–100 mol% Pad–PC–Pad at 37 °C.

Similar content being viewed by others

References

  1. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  Google Scholar 

  2. Noguchi, H. Polyhedral vesicles: a Brownian dynamics simulation. Phys. Rev. E 67, 041901 (2003).

    Article  Google Scholar 

  3. Blaurock, A. E. & Gamble, R. C. Small phosphatidylcholine vesicles appear to be faceted below the thermal phase transition. J. Membr. Biol. 50, 187–204 (1979).

    Article  CAS  Google Scholar 

  4. Phillips, M. C. & Chapman, D. Monolayer characteristics of saturated 1,2-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air–water interface. Biochim. Biophys. Acta 163, 301–313 (1968).

    Article  CAS  Google Scholar 

  5. Lichtenberg, D. et al. Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidylcholine single lamellar vesicles. Biochemistry 20, 3462–3467 (1981).

    Article  CAS  Google Scholar 

  6. Lichtenberg, D. & Schmidt, C. F. Molecular packing and stability in the gel phase of curved phosphatidylcholine vesicles. Lipids 16, 555–557 (1981).

    Article  CAS  Google Scholar 

  7. Dubois, M. et al. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411, 672–675 (2001).

    Article  CAS  Google Scholar 

  8. Dubois, M. et al. Shape control through molecular segregation in giant surfactant aggregates. Proc. Natl Acad. Sci. USA 101, 15082–15082 (2004).

    Article  CAS  Google Scholar 

  9. De Haas, G. H., Dijkman, R., van Oort, M. G. & Verger, R. Competitive inhibition of lipolytic enzymes. III. Some acylamino analogues of phospholipids are potent competitive inhibitors of porcine pancreatic phospholipase A2. Biochim. Biophys. Acta 1043, 75–82 (1990).

    Article  CAS  Google Scholar 

  10. Jia, C. & Haines, A. H. Diamide analogues of phosphatidyl choline as potential anti-aids agents. J. Chem. Soc. Perkin Trans. 1, 2521–2523 (1993).

    Article  Google Scholar 

  11. Sunamoto, J., Goto, M., Iwamoto, K., Kondo, H. & Sato, T. Synthesis and characterization of 1,2-dimyristoylamido-1,2-deoxyphosphatidylcholine as an artificial boundary lipid. Biochim. Biophys. Acta 1024, 209–219 (1990).

    Article  CAS  Google Scholar 

  12. Gupta, C. M. & Bali, A. Carbamyl analogs of phosphatidylcholines: synthesis, interaction with phospholipases and permeability behavior of their liposomes. Biochim. Biophys. Acta 663, 506–515 (1981).

    Article  CAS  Google Scholar 

  13. Fedotenko, I. A., Zaffalon, P-L., Favarger, F. & Zumbuehl, A. The synthesis of 1,3-diamidophospholipids. Tetrahedron Lett. 51, 5382–5384 (2010).

    Article  CAS  Google Scholar 

  14. Liu, H. et al. DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. Chem. Eur. J. 16, 3791–3797 (2010).

    Article  CAS  Google Scholar 

  15. Heimburg, T. Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim. Biophys. Acta 1415, 147–162 (1998).

    Article  CAS  Google Scholar 

  16. Maulik, P. R. & Shipley, G. G. N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry 35, 8025–8034 (1996).

    Article  CAS  Google Scholar 

  17. Vance, D. E. Biochemistry of Lipids, Lipoproteins and Membranes (Elsevier Science, 1991).

    Google Scholar 

  18. Seelig, J., Dijkman, R. & De Haas, G. H. Thermodynamic and conformational studies on sn-2-phosphatidylcholines in monolayers and bilayers. Biochemistry 19, 2215–2219 (1980).

    Article  CAS  Google Scholar 

  19. Holopainen, M. J., Angelova, M. & Kinnunen, P. K. J. Giant liposomes in studies on membrane domain formation. Methods Enzymol. 367, 15–23 (2003).

    Google Scholar 

  20. Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant vesicles: preparations and applications. ChemBioChem 11, 848–865 (2010).

    Article  CAS  Google Scholar 

  21. Ishikawa, T., Sakakibara, H. & Oiwa, K. The architecture of outer dynein arms in situ. J. Mol. Biol. 368, 1249–1258 (2007).

    Article  CAS  Google Scholar 

  22. Szebeni, J. et al. Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine 8, 176–184 (2012).

    Article  CAS  Google Scholar 

  23. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. & Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557, 9–23 (1979).

    Article  CAS  Google Scholar 

  24. Weinstein, J., Yoshikami, S., Henkart, P., Blumenthal, R. & Hagins, W. Liposome–cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195, 489–492 (1977).

    Article  CAS  Google Scholar 

  25. Blok, M. C., van Deenen, L. L. M. & de Gier, J. Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidycholine liposomes. Biochim. Biophys. Acta 433, 1–12 (1976).

    Article  CAS  Google Scholar 

  26. Inoue, K. Permeability properties of liposomes prepared from dipalmitoyllecithin, dimyristoyllecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin. Biochim. Biophys. Acta 339, 390–402 (1974).

    Article  CAS  Google Scholar 

  27. Magin, R. L. & Niesman, M. R. Temperature-dependent permeability of large unilamellar liposomes. Chem. Phys. Lipids 34, 245–256 (1984).

    Article  CAS  Google Scholar 

  28. Barenholz, Y & Thompson, T. E. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604, 129–158 (1980).

    Article  CAS  Google Scholar 

  29. Bernard, A. L. et al. Shear-induced permeation and fusion of lipid vesicles. J. Colloid Interface Sci. 287, 298–306 (2005).

    Article  CAS  Google Scholar 

  30. Chakravarthy, S. R. & Giorgio, T. D. Shear stress-facilitated calcium ion transport across lipid bilayers. Biochim. Biophys. Acta 1112, 197–204 (1992).

    Article  CAS  Google Scholar 

  31. Brezesinski, G., Dobner, B., Stefaniu, C. & Vollhardt, D. Monolayer characteristics of an N-acylated ethanolamine at the air/water interface. J. Phys. Chem. C 115, 8206–8213 (2011).

    Article  CAS  Google Scholar 

  32. Fainerman, V. B., Vollhardt, D. & Melzer, V. Kinetics of two-dimensional phase transition of amphiphilic monolayers at the air/water interface. J. Chem. Phys. 107, 243–251 (1997).

    Article  CAS  Google Scholar 

  33. Phillips, M. C., Graham, D. E. & Hauser, H. Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature 254, 154–156 (1975).

    Article  CAS  Google Scholar 

  34. Gaines, G. L. Insoluble Monolayers at Liquid–Gas Interfaces (Wiley, 1966).

    Google Scholar 

  35. Duncan, S. L. & Larson, R. G. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys. J. 94, 2965–2986 (2008).

    Article  CAS  Google Scholar 

  36. Lund-Katz, S., Laboda, H. M., McLean, L. R. & Phillips, M. C. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry 27, 3416–3423 (1988).

    Article  CAS  Google Scholar 

  37. Prenner, E., Honsek, G., Hönig, D., Möbius, D. & Lohner, K. Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers. Chem. Phys. Lipids 145, 106–118 (2007).

    Article  CAS  Google Scholar 

  38. McConnell, H. M. & De Koker, R. Equilibrium thermodynamics of lipid monolayer domains. Langmuir 12, 4897–4904 (1996).

    Article  CAS  Google Scholar 

  39. Hoenig, D. & Moebius, D. Direct visualization of monolayers at the air–water interface by Brewster angle microscopy. J. Phys. Chem. 95, 4590–4592 (1991).

    Article  CAS  Google Scholar 

  40. Müller, B. Natural formation of nanostructures: from fundamentals in metal heteroepitaxy to applications in optics and biomaterials science. Surf. Rev. Lett. 8, 169–228 (2001).

    Google Scholar 

  41. Müller, B. et al. Island shape transition in heteroepitaxial metal growth on square lattices. Phys. Rev. Lett. 80, 2642–2645 (1998).

    Article  Google Scholar 

  42. Berridge, B. R. et al. A translational approach to detecting drug-induced cardiac injury with cardiac troponins: consensus and recommendations from the Cardiac Troponins Biomarker Working Group of the Health and Environmental Sciences Institute. Am. Heart J. 158, 21–29 (2009).

    Article  CAS  Google Scholar 

  43. Slysh, S., Goldberg, S., Dervan, J. P. & Zalewski, A. Unstable angina and evolving myocardial infarction following coronary bypass surgery: pathogenesis and treatment with interventional catheterization. Am. Heart J. 109, 744–752 (1985).

    Article  CAS  Google Scholar 

  44. Pijls, N. H. J. Acute myocardial infarction and underlying stenosis severity. Am. J. Cardiol. 103, 1204–1205 (2009).

    Article  Google Scholar 

  45. Cheng, C. et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195, 225–235 (2007).

    Article  CAS  Google Scholar 

  46. Giorgio, T. D. & Yek, S. H. The effect of bilayer composition on calcium ion transport facilitated by fluid shear stress. Biochim. Biophys. Acta 1239, 39–44 (1995).

    Article  Google Scholar 

  47. Curtis, J. J. et al. Centrifugal pumps: description of devices and surgical techniques. Ann. Thorac. Surg. 68, 666–671 (1999).

    Article  CAS  Google Scholar 

  48. Paparella, D. et al. Blood damage related to cardiopulmonary bypass: in vivo and in vitro comparison of two different centrifugal pumps. ASAIO J. 50, 473–478 (2004).

    Article  Google Scholar 

  49. Clerc, S. & Barenholz, Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim. Biophys. Acta 1240, 257–265 (1995).

    Article  Google Scholar 

  50. Kantsler, V. & Steinberg, V. Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation via Research Program 62 ‘Smart Materials’ and the proof-of-principle fund of the University of Geneva. I.A.F., P.-L.Z. and A.Z. acknowledge support from the Swiss National Science Foundation (grant 200020_132035) and European Cooperation in Science and Technology Action D43. The authors thank the Electron Microscopy Center ETH Zurich and T. Ishikawa for cryo-TEM work, K. Peters for viability tests, and the Bioimaging, Mass Spectroscopy and Nuclear Magnetic Resonance facilities at the University of Geneva for analytical services, and the Critical Care Service at the University Hospitals of Geneva for the gift of the extracorporeal heart pump. The authors also appreciate scientific discussions with T. Fyles, A. Roux, F. Stellacci and T. Zemb.

Author information

Authors and Affiliations

Authors

Contributions

B.M., T.S. and A.Z. contributed the original idea, secured the financing and supervised the project. M.N.H., B.M., T.S. and A.Z. designed the experiments. I.A.F. synthesized Pad–PC–Pad. M.N.H., I.A.F., D.A., J.A., L.B., F.F., R.R., R.T., P-L.Z., A.Zi. and A.Z. performed the experiments. M.N.H., R.R., A.Zi., B.M., T.S. and A.Z. wrote the paper.

Corresponding authors

Correspondence to Bert Müller, Till Saxer or Andreas Zumbuehl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 12741 kb)

Supplementary information

Supplementary movie (MOV 1703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holme, M., Fedotenko, I., Abegg, D. et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nature Nanotech 7, 536–543 (2012). https://doi.org/10.1038/nnano.2012.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.84

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research