Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots

Abstract

Quantum dots have been used in biomedical research for imaging1,2, diagnostics3,4 and sensing purposes5,6. However, concerns over the cytotoxicity of their heavy metal constituents7,8 and conflicting results from in vitro7,9 and small animal10,11,12,13,14 toxicity studies have limited their translation towards clinical applications. Here, we show in a pilot study that rhesus macaques injected with phospholipid micelle-encapsulated CdSe/CdS/ZnS quantum dots do not exhibit evidence of toxicity. Blood and biochemical markers remained within normal ranges following treatment, and histology of major organs after 90 days showed no abnormalities. Our results show that acute toxicity of these quantum dots in vivo can be minimal. However, chemical analysis revealed that most of the initial dose of cadmium remained in the liver, spleen and kidneys after 90 days. This means that the breakdown and clearance of quantum dots is quite slow, suggesting that longer-term studies will be required to determine the ultimate fate of these heavy metals and the impact of their persistence in primates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of phospholipid micelle-encapsulated CdSe/CdS/ZnS quantum dot formulation.
Figure 2: Blood test results for treated rhesus macaques.
Figure 3: ICP-MS analysis of the major organs of treated (n = 3) and control (n = 1) rhesus macaques.
Figure 4: Histological images from the major organs of the rhesus macaques three months after intravenous injection of the QD formulation.

Similar content being viewed by others

References

  1. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  2. Yong, K-T. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20, 015102 (2009).

    Article  Google Scholar 

  3. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  4. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  5. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  6. Mattoussi, H., Palui, G. & Na, H. B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 64, 138–166 (2012).

    Article  CAS  Google Scholar 

  7. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    Article  CAS  Google Scholar 

  8. Choi, H. S. et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9, 2354–2359 (2009).

    Article  CAS  Google Scholar 

  9. Cho, S. J. et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23, 1974–1980 (2007).

    Article  CAS  Google Scholar 

  10. Yong, K-T., Roy, I., Ding, H., Bergey, E. J. & Prasad, P. N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 5, 1997–2004 (2009).

    Article  CAS  Google Scholar 

  11. Hauck, T. S., Anderson, R. E., Fischer, H. C., Newbigging, S. & Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 6, 138–144 (2010).

    Article  CAS  Google Scholar 

  12. Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P. & Waggoner, A. S. Noninvasive imaging of quantum dots in mice. Bioconj. Chem. 15, 79–86 (2004).

    Article  CAS  Google Scholar 

  13. Fischer, H. C., Liu, L., Pang, K. S. & Chan, W. C. W. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv. Funct. Mater. 16, 1299–1305 (2006).

    Article  CAS  Google Scholar 

  14. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  15. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  Google Scholar 

  16. Werlin, R. et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature Nanotech. 6, 65–71 (2011).

    Article  CAS  Google Scholar 

  17. Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006).

    Article  Google Scholar 

  18. Choi, H. S. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  19. Hoshino, A. et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169 (2004).

    Article  CAS  Google Scholar 

  20. Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005).

    Article  CAS  Google Scholar 

  21. Xia, H-J., Zhang, G-H., Wang, R-R. & Zheng, Y-T. The influence of age and sex on the cell counts of peripheral blood leukocyte subpopulations in Chinese rhesus macaques. Cell Mol. Immunol. 6, 433–440 (2009).

    Article  Google Scholar 

  22. Xia, H., Liu, H., Zhang, G. & Zheng, Y. Phenotype and function of monocyte-derived dendritic cells from Chinese rhesus macaques. Cell Mol. Immunol. 6, 159–165 (2009).

    Article  Google Scholar 

  23. Ho, C-C. et al. Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology http://dx.doi.org/10.3109/17435390.2011.635814 (2011).

  24. Fitzpatrick, J. A. J. et al. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9, 2736–2741 (2009).

    Article  CAS  Google Scholar 

  25. Schipper, M. L. et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009).

    Article  CAS  Google Scholar 

  26. Al-Jamal, W. T., Al-Jamal, K. T., Cakebread, A., Halket, J. M. & Kostarelos, K. Blood circulation and tissue biodistribution of lipid–quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconj. Chem. 20, 1696–1702 (2009).

    Article  CAS  Google Scholar 

  27. Yang, R. S. H. et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007).

    Article  CAS  Google Scholar 

  28. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  Google Scholar 

  29. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  30. Manna, L., Scher, E. C., Li, L-S. & Alivisatos, A. P. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136–7145 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The John R. Oishei Foundation, Air Force Office of Scientific Research (grant no. FA95500610398), the Singapore Ministry of Education (Grants Tier 2 MOE2010-T2-2-010 (M4020020.040 ARC2/11) and Tier 1 M4010360.040 RG29/10), Nanyang Technological University (start-up grant no. M4080141.040), the Beijing Natural Science Foundation (no. 7092097) and the National Natural Science Foundation of China (no. 21071150). The authors thank A. Maitra of Johns Hopkins University for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.T.Y. and L.Y. designed the research. K.T.Y, L.Y., R.H., L.L., J.Z., I.R. W.C.L., J.L., K.W., J.L., Y.L. and Y.H. performed the research. L.Y., K.T.Y., L.L., I.R., R.H., J.Z., H.C., W.C.L., J.L., K.W., J.L., Y.L., Y.H., X.Z., M.T.S. and P.N.P. analysed the data. K.T.Y., L.Y., I.R., M.T.S. and P.N.P. co-wrote the paper.

Corresponding authors

Correspondence to Ling Ye, Ken-Tye Yong or Paras N. Prasad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 21264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, L., Yong, KT., Liu, L. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nature Nanotech 7, 453–458 (2012). https://doi.org/10.1038/nnano.2012.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing