Dual-gated bilayer graphene hot-electron bolometer

Journal name:
Nature Nanotechnology
Volume:
7,
Pages:
472–478
Year published:
DOI:
doi:10.1038/nnano.2012.88
Received
Accepted
Published online

Abstract

Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers—devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light—because its small electron heat capacity and weak electron–phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz–1/2 at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures.

At a glance

Figures

  1. Bilayer graphene device and typical optoelectronic response.
    Figure 1: Bilayer graphene device and typical optoelectronic response.

    a, Schematic of device geometry and electric-field-effect gating. b, Optical micrograph of a bilayer graphene device. Scale bar, 5 µm. For clarity, the image shows the sample before top-gate dielectric and metal deposition. c, Photoresponse of DGBLG. The sample is gated to a charge-neutral position with a displacement field of 0.45 V nm−1. Blue squares are the photoresponse ΔV. Red circles are the electrical resistance change ΔR =  ΔV/Idc.

  2. Dependencies of R and [Delta]V on Vtg and Vbg.
    Figure 2: Dependencies of R and ΔV on Vtg and Vbg.

    a, Two-dimensional map of R(Vtg,Vbg) measured in the dark. b, Two-dimensional map of ΔV(Vtg,Vbg) with a d.c. bias of 255 nA. c,d, One-dimensional cuts of R and ΔV through data in a and b. The two black cuts correspond to varying the average displacement field (varying the bandgap) while maintaining charge neutrality (n = 0). Others correspond to varying the charge density at fixed average displacement fields (fixed bandgap). e, Comparison of normalized R2 and ΔV with varying average displacement fields at charge neutrality, where . f, Comparison of normalized R2 and ΔV with varying charge density at a fixed average displacement field of 0.45 V nm−1, where Rn=0 = 30 k, ΔVn=0 = 28 µV. Measurements were carried out at a temperature of 6 K in cold helium gas.

  3. Comparison of photoresponse and electrical heating of DGBLG at charge neutrality with D = -0.65 V nm-1.
    Figure 3: Comparison of photoresponse and electrical heating of DGBLG at charge neutrality with D macr = −0.65 V nm−1.

    Optical and electrical measurements were performed simultaneously with d.c. and a.c. currents and photon illumination from 0.658 µm laser light. Left inset: optical (blue) and electrical (red) responses as a function of d.c. current at T = 5.16 K. We extract the slope of these traces near Idc = 0 and plot them as a function of temperature in the main panel. Right inset: data in log–log scale.

  4. Electrical heating of DGBLG at charge neutrality with D = 0.55 V nm-1.
    Figure 4: Electrical heating of DGBLG at charge neutrality with D macr = 0.55 V nm−1.

    ac, Temperature dependence of resistance R, derivative of resistance with power dR/dP and heat resistance Rh. Symbols are experimental data, and red lines are power-law fits. d, Heat conduction diagram for the device.

  5. Response speed of DGBLG HEB.
    Figure 5: Response speed of DGBLG HEB.

    Normalized photoresponse from pump–probe laser pulses as a function of delay tD at 4.55 K and 10 K with bias Idc = 185 nA. The sample is gated to charge neutrality with a displacement field of 0.45 V nm−1. Lines show best fits assuming exponential decay of hot-electron temperature Te with a thermal response time τ and considering a nonlinear Te dependence of graphene resistance. Solid line (red) and dot-dashed line (blue) are for τ = 0.25 ns and 0.1 ns, respectively.

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109162 (2009).
  2. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).
  3. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech. 3, 206209 (2008).
  4. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351355 (2008).
  5. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491495 (2008).
  6. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722726 (2010).
  7. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622634 (1947).
  8. Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200 (2005).
  9. Zhang, Y., Tan, Y., Stormer, H. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201204 (2005).
  10. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
  11. Mak, K. F., Sfeirb, M. Y., Misewich, J. A. & Heinz, T. F. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 107, 1499915004 (2010).
  12. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648652 (2011).
  13. Kalugin, N. G. et al. Graphene-based quantum Hall effect infrared photodetector operating at liquid nitrogen temperatures. Appl. Phys. Lett. 99, 013504 (2011).
  14. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).
  15. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151157 (2008).
  16. Zhou, K. & Zhu, J. Transport in gapped bilayer graphene: the role of potential fluctuations. Phys. Rev. B 82, 081407(R) (2010).
  17. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).
  18. Yan, J. & Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 10, 45214525 (2010).
  19. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820823 (2009).
  20. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).
  21. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 41344137 (2011).
  22. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 17421746 (2009).
  23. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839843 (2009).
  24. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297301 (2010).
  25. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562566 (2010).
  26. Skidmore, J. T., Gildemeister, J., Lee, A. T., Myers, M. J. & Richards, P. L. Superconducting bolometer for far-infrared Fourier transform spectroscopy. Appl. Phys. Lett. 82, 469471 (2003).
  27. Richards, P. L. & McCreight, C. R. Infrared detectors for astrophysics. Phys. Today 58, 4147 (February 2005).
  28. Tse, W-K., Hwang, E. H. & Das Sarma, S. Ballistic hot electron transport in graphene. Appl. Phys. Lett. 93, 023128 (2008).
  29. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).
  30. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).
  31. Wang, H. N. et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl. Phys. Lett. 96, 081917 (2010).
  32. Hale, P. J., Hornett, S. M., Moger, J., Horsell, D. W. & Hendry, E. Hot phonon decay in supported and suspended exfoliated graphene. Phys. Rev. B 83, 121404(R) (2011).
  33. Chatzakis, I., Yan, H., Song, D., Berciaud, S. & Heinz, T. F. Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite. Phys. Rev. B 83, 205411 (2011).
  34. Stephens, R. B. Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys. Rev. B 8, 28962905 (1973).
  35. Chen, Z., Jang, W., Bao, W., Lau, C. N. & Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95, 161910 (2009).
  36. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single electron transistor. Nature Phys. 4, 144148 (2008).
  37. Yan, J., Henriksen, E. A., Kim, P. & Pinczuk, A. Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008).
  38. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).
  39. Zhang, L. M. et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008).
  40. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Supercollisions and the bottleneck for electron-lattice cooling in graphene. Preprint at http://arXiv:1111.4678v1 (2011).
  41. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 124 (1994).
  42. Nishioka, N. S., Richards, P. L. & Woody, D. P. Composite bolometers for submillimeter wavelengths. Appl. Opt. 17, 15621567 (1978).
  43. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974977 (2000).
  44. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech. 3, 496500 (2008).
  45. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812816 (2010).
  46. Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech. 7, 156160 (2012).
  47. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 5659 (2007).
  48. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Preprint at http://arXiv:1112.1380 (2011).
  49. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. http://dx.doi.org/10.1021/nl204512x (2012).

Download references

Author information

Affiliations

  1. Center for Nanophysics and Advanced Materials and Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742, USA

    • Jun Yan,
    • M-H. Kim,
    • A. B. Sushkov,
    • G. S. Jenkins,
    • M. S. Fuhrer &
    • H. D. Drew
  2. Department of Physics, University of Maryland, College Park, Maryland 20742, USA

    • Jun Yan,
    • M-H. Kim,
    • J. A. Elle,
    • A. B. Sushkov,
    • G. S. Jenkins,
    • H. M. Milchberg,
    • M. S. Fuhrer &
    • H. D. Drew
  3. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA

    • J. A. Elle &
    • H. M. Milchberg

Contributions

M.S.F. and H.D.D. conceived the project. J.Y. fabricated the devices and performed the transport measurements. M.H.K., J.Y., A.B.S. and G.S.J. conducted the photoresponse experiments. J.A.E. and H.M.M. assisted in the pump–probe measurements. J.Y., M.H.K., M.S.F. and H.D.D. analysed data and wrote the manuscript. All authors discussed and contributed to writing the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (512 KB)

    Supplementary information

Additional data