Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors

Abstract

Monitoring the binding affinities and kinetics of protein interactions is important in clinical diagnostics and drug development because such information is used to identify new therapeutic candidates. Surface plasmon resonance is at present the standard method used for such analysis, but this is limited by low sensitivity and low-throughput analysis. Here, we show that silicon nanowire field-effect transistors can be used as biosensors to measure protein–ligand binding affinities and kinetics with sensitivities down to femtomolar concentrations. Based on this sensing mechanism, we develop an analytical model to calibrate the sensor response and quantify the molecular binding affinities of two representative protein–ligand binding pairs. The rate constant of the association and dissociation of the protein–ligand pair is determined by monitoring the reaction kinetics, demonstrating that silicon nanowire field-effect transistors can be readily used as high-throughput biosensors to quantify protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the Si-NW FET biosensor set-up and binding cycles.
Figure 2: Measurements of HMGB1 and DNA binding using the Si-NW FET.
Figure 3: Sensor response of the binding of biotin and streptavidin as measured by the Si-NW FET.
Figure 4: Competitive dissociation processes of streptavidin from a biotin-functionalized surface.

Similar content being viewed by others

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  Google Scholar 

  2. Wilson, G. S. & Gifford, R. Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20, 2388–2403 (2005).

    Article  CAS  Google Scholar 

  3. Cheng, M. M. C. et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006).

    Article  CAS  Google Scholar 

  4. D'Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 334, 41–69 (2003).

    Article  CAS  Google Scholar 

  5. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    Article  CAS  Google Scholar 

  6. Cooper, M. A. Optical biosensors in drug discovery. Nature Rev. Drug Discov. 1, 515–528 (2002).

    Article  CAS  Google Scholar 

  7. Curreli, M. et al. Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotech. 7, 651–667 (2008).

    Article  Google Scholar 

  8. Stern, E., Vacic, A. & Reed, M. A. Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron Dev. 55, 3119–3130 (2008).

    Article  CAS  Google Scholar 

  9. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  CAS  Google Scholar 

  10. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    Article  CAS  Google Scholar 

  11. Wang, W. U., Chen, C., Lin, K. H., Fang, Y. & Lieber, C. M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl Acad. Sci. USA 102, 3208–3212 (2005).

    Article  CAS  Google Scholar 

  12. De Vico, L. et al. Quantifying signal changes in nano-wire based biosensors. Nanoscale 3, 706–717 (2011).

    Article  CAS  Google Scholar 

  13. Bunimovich, Y. L. et al. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128, 16323–16331 (2006).

    Article  CAS  Google Scholar 

  14. Squires, T. M., Messinger, R. J. & Manalis, S. R. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnol. 26, 417–426 (2008).

    Article  CAS  Google Scholar 

  15. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  16. Li, Y., Berk, I. C. & Modis, Y. DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature. EMBO J. 31, 919–931 (2012).

    Article  CAS  Google Scholar 

  17. Wilchek, M. & Bayer, E. A. Introduction to avidin-biotin technology. Methods Enzymol. 184, 5–13 (1990).

    Article  CAS  Google Scholar 

  18. Balasubramanian, K. Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: a review. Biosens. Bioelectron. 26, 1195–1204 (2011).

    Article  Google Scholar 

  19. Ishikawa, F. N. et al. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3, 3969–3976 (2009).

    Article  CAS  Google Scholar 

  20. Lee, B. Y. et al. Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5, 4373–4379 (2011).

    Article  CAS  Google Scholar 

  21. Abe, M. et al. Quantitative detection of protein using a top-gate carbon nanotube field effect transistor. J. Phys. Chem. C 111, 8667–8670 (2007).

    Article  CAS  Google Scholar 

  22. Myszka, D. G., He, X., Dembo, M., Morton, T. A. & Goldstein, B. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys. J. 75, 583–594 (1998).

    Article  CAS  Google Scholar 

  23. Gaster, R. S. et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nature Nanotech. 6, 314–320 (2011).

    Article  CAS  Google Scholar 

  24. Elfstroem, N., Karlstroem, A. E. & Linnrost, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 8, 945–949 (2008).

    Article  CAS  Google Scholar 

  25. Sheehan, P. E. & Whitman, L. J. Detection limits for nanoscale biosensors. Nano Lett. 5, 803–807 (2005).

    Article  CAS  Google Scholar 

  26. Bergveld, P. A critical-evaluation of direct electrical protein-detection methods. Biosens. Bioelectron. 6, 55–72 (1991).

    Article  CAS  Google Scholar 

  27. Stern, E. et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007).

    Article  CAS  Google Scholar 

  28. Bianchi, M. E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear-protein HMG1. Science 243, 1056–1059 (1989).

    Article  CAS  Google Scholar 

  29. Ivanov, S. et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110, 1970–1981 (2007).

    Article  CAS  Google Scholar 

  30. Ohndorf, U. M., Rould, M. A., He, Q., Pabo, C. O. & Lippard, S. J. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399, 708–712 (1999).

    Article  CAS  Google Scholar 

  31. Pil, P. M. & Lippard, S. J. Specific binding of chromosomal protein-HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992).

    Article  CAS  Google Scholar 

  32. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  33. Jung, Y. & Lippard, S. J. Nature of full-length HMGB1 binding to cisplatin-modified DNA. Biochemistry 42, 2664–2671 (2003).

    Article  CAS  Google Scholar 

  34. Perez-Luna, V. H. et al. Molecular recognition between genetically engineered streptavidin and surface-bound biotin. J. Am. Chem. Soc. 121, 6469–6478 (1999).

    Article  CAS  Google Scholar 

  35. Jung, L. S., Nelson, K. E., Stayton, P. S. & Campbell, C. T. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir 16, 9421–9432 (2000).

    Article  CAS  Google Scholar 

  36. Buranda, T. et al. Ligand receptor dynamics at streptavidin-coated particle surfaces: a flow cytometric and spectrofluorimetric study. J. Phys. Chem. B 103, 3399–3410 (1999).

    Article  CAS  Google Scholar 

  37. Tang, Y. J., Mernaugh, R. & Zeng, X. Q. Nonregeneration protocol for surface plasmon resonance: study of high-affinity interaction with high-density biosensors. Anal. Chem. 78, 1841–1848 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Netherlands Organization for Scientific Research (NWO, Rubicon grant), the National Institutes of Health (NIH R01EB008260 and P01GM022778), the Burroughs Welcome Fund (to Y.M.) and DTRA (HDTRA1-10-1-0037). The authors thank A. Vacic, M. Weber and W. Guan for help with the electrical measurement and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.D. and M.A.R. conceived and designed the experiments. X.D. performed the experiments. X.D. and N.K.R. analysed the data. N.K.R. and D.A.R. fabricated the nanowire devices. Y.L. and Y.M. contributed the DNA and proteins, and X.D. and M.A.R. co-wrote the paper.

Corresponding author

Correspondence to Mark A. Reed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Li, Y., Rajan, N. et al. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nature Nanotech 7, 401–407 (2012). https://doi.org/10.1038/nnano.2012.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing