Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical control of a solid-state flying qubit

Abstract

Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons1. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time2,3. However, until now, there have been no demonstrations of scalable ‘flying qubit’ architectures—systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred—in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov–Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (86 µm at 70 mK) and higher operating frequencies (100 GHz) than other solid-state implementations of flying qubits4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device image and observed conventional AB oscillation.
Figure 2: Demonstration of Rx operation.
Figure 3: Demonstration of Rz operation.
Figure 4: Evaluation of coherence length lϕ.

Similar content being viewed by others

References

  1. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  CAS  Google Scholar 

  2. Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  3. McNeil, R. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  4. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  CAS  Google Scholar 

  5. Roulleau, P. et al. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys. Rev. Lett. 100, 126802 (2008).

    Article  Google Scholar 

  6. Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Two-particle Aharonov–Bohm effect and entanglement in the electronic Hanbury Brown–Twiss setup. Phys. Rev. Lett. 92, 026805 (2004).

    Article  CAS  Google Scholar 

  7. Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article  CAS  Google Scholar 

  8. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1949).

    Article  Google Scholar 

  9. Washburn, B. S. & Webb, R. A. Aharonov–Bohm effect in normal metal quantum coherence and transport. Adv. Phys. 35, 375–422 (1986).

    Article  CAS  Google Scholar 

  10. Tonomura, A. et al. Observation of Aharonov–Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982).

    Article  Google Scholar 

  11. Giesbers, A. J. M. et al. Correlation-induced single-flux-quantum penetration in quantum rings. Nature Phys. 6, 173–177 (2010).

    Article  CAS  Google Scholar 

  12. Onsager, L. Reciprocal relations in irreversible process. Phys. Rev. 38, 2265–2279 (1931).

    Article  CAS  Google Scholar 

  13. Yeyati, A. L. & Büttiker, M. Aharonov–Bohm oscillations in a mesoscopic ring with a quantum dot. Phys. Rev. B 52, R14360–R14363 (1995).

    Article  CAS  Google Scholar 

  14. Yacoby, A., Schuster, R. & Heiblum, M. Phase rigidity and h/2e oscillations in a single-ring Aharonov–Bohm experiment. Phys. Rev. B 53, 9583–9586 (1996).

    Article  CAS  Google Scholar 

  15. Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Article  Google Scholar 

  16. Benoit, A. D., Washburn, S., Umbach, C. P., Laibowitz, R. B. & Webb, R. A. Asymmetry in the magnetoconductance of metal wires and loops. Phys. Rev. Lett. 57, 1765–1768 (1986).

    Article  CAS  Google Scholar 

  17. Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    Article  CAS  Google Scholar 

  18. Del Alamo, J. A. & Eugster, C. C. Quantum field-effect directional coupler. Appl. Phys. Lett. 56, 78–80 (1990).

    Article  Google Scholar 

  19. Tsukada, N., Wieck, A. D. & Ploog, K. Proposal of novel electron wave coupled devices. Appl. Phys. Lett. 56, 2527–2529 (1990).

    Article  Google Scholar 

  20. Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C. & Reggiani, S. Quantum logic gates based on coherent electron transport in quantum wires. Phys. Rev. Lett. 84, 5912–5915 (2000).

    Article  CAS  Google Scholar 

  21. Ionicioiu, R., Zanardi, P. & Rossi, F. Testing Bell's inequality with ballistic electrons in semiconductors. Phys. Rev. A 63, 050101(R) (2001).

  22. Yu, L. & Voskoboynikov, O. Ballistic Aharonov–Bohm quantum bits and quantum gates. Solid State Commun. 145, 447–450 (2008).

    Article  CAS  Google Scholar 

  23. Seelig, G. & Büttiker, M. Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer. Phys. Rev. B 64, 245313 (2003).

    Article  Google Scholar 

  24. Hansen, A. E., Kristensen, A., Pedersen, S., Sørensen, C. B. & Lindelof, P. E. Mesoscopic decoherence in Aharonov–Bohm rings. Phys. Rev. B 64, 045327 (2001).

    Article  Google Scholar 

  25. Kobayashi, K., Aikawa, H., Katsumoto, S. & Iye, Y. Probe-configuration-dependent decoherence in an Aharonov–Bohm ring. J. Phys. Soc. Jpn 71, 2094–2097 (2002).

    Article  CAS  Google Scholar 

  26. Seelig, G., Pilgram, S., Jordan, A. N. & Büttiker, M. Probe-configuration-dependent dephasing in a mesoscopic interferometer. Phys. Rev. B 68, 161310(R) (2003).

  27. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  CAS  Google Scholar 

  28. Fève, G. et al. An on-demand coherent single-electron source. Science 316, 1169–1172 (2007).

    Article  Google Scholar 

  29. Schomerus, H. & Robinson, J. P. Entanglement between static and flying qubits in an Aharonov–Bohm double electrometer. New J. Phys. 9, 67 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Halperin for discussions. M.Y. acknowledges financial support from a Grant-in-Aid for Young Scientists A (no. 20684011). S. Takada acknowledges support from JSPS Research Fellowships for Young Scientists. S.Tarucha acknowledges financial support from Grants-in-Aid for Scientific Research S (no. 19104007) and B (no. 18340081), a MEXT Project for Developing Innovation Systems, MEXT KAKENHHI ‘Quantum Cybernetics’ and JST Strategic International Cooperative Program, Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST). A.D.W. acknowledges expert help from PD D. Reuter and support of the DFG SPP1285 and BMBF QuaHLRep 01BQ1035. C.B. acknowledges financial support from CNRS (DREI)–JSPS (nos PRC 424 and L08519).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. conceived the experiments, performed part of the experiments, interpreted the data and wrote the manuscript with C.B. and S. Tarucha. S. Takada fabricated the samples and conducted measurements and analysis. C.B. contributed to the experimental set-up and interpretation of the data. K.W. performed the experiments on decoherence with S. Takada. S. Takada, K.W. and C.B. carried out the high visibility measurements in Grenoble as presented in the Supplementary Information. A.D.W. provided the high-mobility heterostructures. S. Tarucha directed the research. All authors discussed the results and the manuscript extensively.

Corresponding author

Correspondence to Michihisa Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Takada, S., Bäuerle, C. et al. Electrical control of a solid-state flying qubit. Nature Nanotech 7, 247–251 (2012). https://doi.org/10.1038/nnano.2012.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing