Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts

Abstract

Metal nanoparticles are used as catalysts in a variety of important chemical reactions1,2, and can have a range of different shapes3,4,5,6,7,8, with facets and sites that differ in catalytic reactivity1,2,9. To develop better catalysts it is necessary to determine where catalysis occurs on such nanoparticles and what structures are more reactive. Surface science experiments or theory can be used to predict the reactivity of surfaces with a known structure1,2,10, and the reactivity of nanocatalysts can often be rationalized from a knowledge of their well-defined surface facets3,4,5. Here, we show that a knowledge of the surface facets of a gold nanorod catalyst is insufficient to predict its reactivity, and we must also consider defects on the surface of the nanorod. We use super-resolution fluorescence microscopy to quantify the catalysis of the nanorods at a temporal resolution of a single catalytic reaction and a spatial resolution of 40 nm. We find that within the same surface facets on the sides of a single nanorod, the reactivity is not constant and exhibits a gradient from the centre of the nanorod towards its two ends. Furthermore, the ratio of the reactivity at the ends of the nanorod to the reactivity at the sides varies significantly from nanorod to nanorod, even though they all have the same surface facets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule super-resolution fluorescence microscopy of single Au@mSiO2 nanorod catalysis at single-turnover resolution.
Figure 2: Quantitative reaction kinetics of a single Au@mSiO2 nanorod at subparticle resolution.
Figure 3: Spatial reactivity patterns of single Au@mSiO2 nanorods.
Figure 4: Reactivity gradient along the nanorod sides.

Similar content being viewed by others

References

  1. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis 2nd edn (Wiley, 2010).

  2. Ertl, G. Reactions at Solid Surfaces (Wiley, 2009).

  3. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  4. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  5. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824–7828 (2006).

    Article  CAS  Google Scholar 

  6. Murphy, C. J. et al. Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr. Opin.Colloid Interface Sci. 16, 128–134 (2011).

    Article  CAS  Google Scholar 

  7. Carbó-Argibay, E. et al. The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angew. Chem. Int. Ed. 49, 9397–9400 (2010).

    Article  Google Scholar 

  8. Katz-Boon, H. et al. Three-dimensional morphology and crystallography of gold nanorods. Nano Lett. 11, 273–278 (2011).

    Article  CAS  Google Scholar 

  9. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  10. Nilsson, A., Pettersson, L. G. M. & Norskov, J. K. Chemical Bonding at Surfaces and Interfaces (Elsevier, 2008).

  11. Botella, P., Corma, A. & Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 19, 1979–1983 (2007).

    Article  CAS  Google Scholar 

  12. Roeffaers, M. B. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  13. Xu, W., Kong, J. S., Yeh, Y-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  14. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    Article  CAS  Google Scholar 

  15. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech. 3, 598–602 (2008).

    Article  CAS  Google Scholar 

  16. Tang, M. L., Liu, N., Dionne, J. A. & Alivisatos, A. P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J. Am. Chem. Soc. 133, 13220–13223 (2011).

    Article  CAS  Google Scholar 

  17. Meier, J., Friedrich, K. A. & Stimming, U. Novel method for the investigation of single nanoparticle reactivity. Discuss. Faraday Soc. 121, 365–372 (2002).

    Article  CAS  Google Scholar 

  18. Tel-Vered, R. & Bard, A. J. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques. J. Phys. Chem. B 110, 25279–25287 (2006).

    Article  CAS  Google Scholar 

  19. Eustis, S. & El-Sayed, M. Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J. Phys. Chem. B 109, 16350–16356 (2005).

    Article  CAS  Google Scholar 

  20. Geddes, C. D., Parfenov, A., Gryczynski, I. & Lakowicz, J. R. Luminescent blinking of gold nanoparticles. Chem. Phys. Lett. 380, 269–272 (2003).

    Article  CAS  Google Scholar 

  21. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  22. Michaelis, J. & Bräuchle, C. Reporters in the nanoworld: diffusion of single molecules in mesoporous materials. Chem. Soc. Rev. 39, 4731–4740 (2010).

    Article  CAS  Google Scholar 

  23. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  24. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    Article  CAS  Google Scholar 

  25. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  26. Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009).

    Article  CAS  Google Scholar 

  27. Xu, W. et al. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett. 9, 3968–3973 (2009).

    Article  CAS  Google Scholar 

  28. Satterfield, C. N. Heterogeneous Catalysis in Practice (McGraw-Hill, 1980).

  29. Wang, Z. L., Gao, R. P., Nikoobakht, B. & El-Sayed, M. A. Surface reconstruction of the unstable {110} surface in gold nanorods. J. Phys. Chem. B 104, 5417–5420 (2000).

    Article  CAS  Google Scholar 

  30. Martin, J. J. & Armington, A. F. Effect of growth rate on quartz defects. J. Crys. Growth 62, 203–206 (1983).

    Article  CAS  Google Scholar 

  31. Gulati, A., Liao, H. & Hafner, J. H. Monitoring gold nanorod synthesis by localized surface plasmon resonance. J. Phys. Chem. B 110, 22323–22327 (2006).

    Article  CAS  Google Scholar 

  32. Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

    Article  CAS  Google Scholar 

  33. De Smit, E. et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456, 222–225 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Army Research Office (W911NF0910232), National Science Foundation (CBET-0851257, to P.C.; DGE0903653, to E.C.), the US Department of Energy (DE-FG02-10ER16199) and the Sloan Research Fellowship for funding, E. Zubarev for gifts of gold nanorod samples and J. Sambur for comments. Part of the work was carried out at the Cornell Center for Materials Research (DMR-0520404) and the Cornell NanoScale Facility (ECS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

P.C. conceived the experiments. X.Z. performed the experiments. N.M.A., G.L., E.C., K-S.H. and H.S. contributed to the experiments. X.Z. and P.C. analysed the data and wrote the paper.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Andoy, N., Liu, G. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotech 7, 237–241 (2012). https://doi.org/10.1038/nnano.2012.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing