Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineering controllable bidirectional molecular motors based on myosin

Abstract

Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1 and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7,8,9,10,11 and guided by a structural model12 for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size13 and branchpoint turning14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered myosin designs.
Figure 2: Gliding filament assays of engineered myosins.
Figure 3: Processive motility of a dimeric controllable motor.

Similar content being viewed by others

References

  1. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  2. Korten, T., Mansson, A. & Diez, S. Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr. Opin. Biotechnol. 21, 477–488 (2010).

    Article  CAS  Google Scholar 

  3. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech. 3, 465–475 (2008).

    Article  CAS  Google Scholar 

  4. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).

    Article  CAS  Google Scholar 

  5. Konishi, K., Uyeda, T. Q. & Kubo, T. Genetic engineering of a Ca2+ dependent chemical switch into the linear biomotor kinesin. FEBS Lett. 580, 3589–3594 (2006).

    Article  CAS  Google Scholar 

  6. Nomura, A., Uyeda, T. Q. P., Yumoto, N. & Tatsu, Y. Photo-control of kinesin-microtubule motility using caged peptides derived from the kinesin C-terminus domain. Chem. Commun. 3588–3590 (2006).

  7. Tsiavaliaris, G., Fujita-Becker, S. & Manstein, D. J. Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–561 (2004).

    Article  CAS  Google Scholar 

  8. Bryant, Z., Altman, D. & Spudich, J. A. The power stroke of myosin VI and the basis of reverse directionality. Proc. Natl Acad. Sci. USA 104, 772–777 (2007).

    Article  CAS  Google Scholar 

  9. Park, H. et al. The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc. Natl Acad. Sci. USA 104, 778–783 (2007).

    Article  CAS  Google Scholar 

  10. Liao, J-C., Elting, M. W., Delp, S. L., Spudich, J. A. & Bryant, Z. Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity. J. Mol. Biol. 392, 862–867 (2009).

    Article  CAS  Google Scholar 

  11. Elting, M. W., Bryant, Z., Liao, J-C. & Spudich, J. A. Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI. Biophys. J. 100, 430–439 (2011).

    Article  CAS  Google Scholar 

  12. Menetrey, J., Llinas, P., Mukherjea, M., Sweeney, H. L. & Houdusse, A. The structural basis for the large powerstroke of myosin VI. Cell 131, 300–308 (2007).

    Article  CAS  Google Scholar 

  13. Vilfan, A. Elastic lever-arm model for myosin V. Biophys. J. 88, 3792–3805 (2005).

    Article  CAS  Google Scholar 

  14. Vilfan, A. Myosin V passing over Arp2/3 junctions: branching ratio calculated from the elastic lever arm model. Biophys. J. 94, 3405–3412 (2008).

    Article  CAS  Google Scholar 

  15. Lee, L. K., Ginsburg, M. A., Crovace, C., Donohoe, M. & Stock, D. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466, 996–1000 (2010).

    Article  CAS  Google Scholar 

  16. Roostalu, J. et al. Directional switching of the kinesin Cin8 through motor coupling. Science 332, 94–99 (2011).

    Article  CAS  Google Scholar 

  17. Holmes, K. C., Schröder, R. R., Sweeney, H. L. & Houdusse, A. The structure of the rigor complex and its implications for the power stroke. Phil. Trans. R. Soc. Lond. B 359, 1819–1828 (2004).

    Article  CAS  Google Scholar 

  18. Wells, A. L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    Article  CAS  Google Scholar 

  19. Menetrey, J. et al. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785 (2005).

    Article  CAS  Google Scholar 

  20. Anson, M., Geeves, M. A., Kurzawa, S. E. & Manstein, D. J. Myosin motors with artificial lever arms. EMBO J. 15, 6069–6074 (1996).

    Article  CAS  Google Scholar 

  21. Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).

    Article  CAS  Google Scholar 

  22. Somlyo, A. P. & Somlyo, A. V. Signal transduction and regulation in smooth muscle. Nature 372, 231–236 (1994).

    Article  CAS  Google Scholar 

  23. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    Article  CAS  Google Scholar 

  24. Satoh, A. K., Li, B. X., Xia, H. & Ready, D. F. Calcium-activated Myosin V closes the Drosophila pupil. Curr. Biol. 18, 951–955 (2008).

    Article  CAS  Google Scholar 

  25. Krementsov, D. N., Krementsova, E. B. & Trybus, K. M. Myosin V: regulation by calcium, calmodulin, and the tail domain. J. Cell Biol. 164, 877–886 (2004).

    Article  CAS  Google Scholar 

  26. Trybus, K. M. et al. Effect of calcium on calmodulin bound to the IQ motifs of myosin V. J. Biol. Chem. 282, 23316–23325 (2007).

    Article  CAS  Google Scholar 

  27. Parker, D., Bryant, Z. & Delp, S. L. Coarse-grained structural modeling of molecular motors using multibody dynamics. Cell. Mol. Bioeng. 2, 366–374 (2009).

    Article  Google Scholar 

  28. Sweeney, H. L. et al. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J. Biol. Chem. 273, 6262–6270 (1998).

    Article  CAS  Google Scholar 

  29. Krementsova, E. B., Hodges, A. R., Lu, H. & Trybus, K. M. Processivity of chimeric class V myosins. J. Biol. Chem. 281, 6079–6086 (2006).

    Article  CAS  Google Scholar 

  30. Zheng, J. Q. & Poo, M. M. Calcium signaling in neuronal motility. Annu. Rev. Cell Dev. Biol. 23, 375–404 (2007).

    Article  CAS  Google Scholar 

  31. Yeh, B. J., Rutigliano, R. J., Deb, A., Bar-Sagi, D. & Lim, W. A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    Article  CAS  Google Scholar 

  32. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  Google Scholar 

  33. Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca2+ with quin2. Meth. Enzymol. 172, 230–262 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M.W. Elting for valuable discussions and assistance, R. Cooke for providing full-length muscle myosin, and S. Sutton for providing purified actin. This work was supported by a Pew Scholars Award (to Z.B.), the NIH (grant no. DP2 OD004690 to Z.B.), an NSF Graduate Research Fellowship (to L.C.), an AHA Predoctoral Fellowship (to M.N.) and a Stanford Graduate Fellowship (to T.D.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.C., M.N. and Z.B. designed the molecular motor constructs. L.C., M.N. and T.D.S. performed experiments on fixed directionality motors. L.C. and M.N. performed experiments on bidirectional motors. L.C. analysed the experimental data. D.P., L.C. and M.N. performed structural modelling. Z.B. conceived and supervised the project. L.C. and Z.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zev Bryant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 0 kb)

Supplementary information

Supplementary movie 1 (MOV 438 kb)

Supplementary information

Supplementary movie 2 (MOV 372 kb)

Supplementary information

Supplementary movie 3 (MOV 435 kb)

Supplementary information

Supplementary movie 4 (MOV 429 kb)

Supplementary information

Supplementary movie 5 (MOV 268 kb)

Supplementary information

Supplementary movie 6A (MOV 1139 kb)

Supplementary information

Supplementary movie 6B (MOV 1302 kb)

Supplementary information

Supplementary movie 7 (MOV 2922 kb)

Supplementary information

Supplementary movie 8 (MOV 503 kb)

Supplementary information

Supplementary movie 9A (MOV 503 kb)

Supplementary information

Supplementary movie 9B (MOV 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Nakamura, M., Schindler, T. et al. Engineering controllable bidirectional molecular motors based on myosin. Nature Nanotech 7, 252–256 (2012). https://doi.org/10.1038/nnano.2012.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.19

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research