Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A local optical probe for measuring motion and stress in a nanoelectromechanical system

Subjects

Abstract

Nanoelectromechanical systems1 can be operated as ultrasensitive mass sensors2,3 and ultrahigh-frequency resonators4, and can also be used to explore fundamental physical phenomena such as nonlinear damping5 and quantum effects in macroscopic objects6. Various dissipation mechanisms are known to limit the mechanical quality factors of nanoelectromechanical systems and to induce aging due to material degradation, so there is a need for methods that can probe the motion of these systems, and the stresses within them, at the nanoscale. Here, we report a non-invasive local optical probe for the quantitative measurement of motion and stress within a nanoelectromechanical system, based on Fizeau interferometry and Raman spectroscopy. The system consists of a multilayer graphene resonator that is clamped to a gold film on an oxidized silicon surface. The resonator and the surface both act as mirrors and therefore define an optical cavity. Fizeau interferometry provides a calibrated measurement of the motion of the resonator, while Raman spectroscopy can probe the strain within the system and allows a purely spectral detection of mechanical resonance at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fizeau fringes in a multilayer graphene cantilever.
Figure 2: Quasistatic actuation and stress mapping of a multilayer graphene cantilever.
Figure 3: Detection of mechanical resonances in multilayer graphene cantilevers by Fizeau interferometry.
Figure 4: Detection of mechanical resonance and dynamic stress using Raman spectroscopy.

Similar content being viewed by others

References

  1. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  2. Lassagne, B., Garcia-Sanchez, D., Aguasca, A. & Bachtold A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8, 3735–3738 (2008).

    Article  CAS  Google Scholar 

  3. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    Article  CAS  Google Scholar 

  4. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D. & Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006).

    Article  CAS  Google Scholar 

  5. Eichler, A. et al. Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes. Nature Nanotech. 6, 339–342 (2011).

    Article  CAS  Google Scholar 

  6. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical oscillator. Nature 464, 697–703 (2010).

    Article  CAS  Google Scholar 

  7. Lee, C., Wei, X., Kysar, J. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  8. Castro Neto, A., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  9. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  10. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  11. Booth, T. J. et al. Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008).

    Article  CAS  Google Scholar 

  12. Bunch, S. J. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  13. Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    Article  CAS  Google Scholar 

  14. Conley, H., Lavrik, N. V., Prasai, D. & Bolotin, K. I. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions. Nano Lett. 11, 4748–4752 (2011).

    Article  CAS  Google Scholar 

  15. Skulason, H. S., Gaskell, P. E. & Szkopek, T. Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers. Nanotechnology 21, 295709 (2010).

    Article  CAS  Google Scholar 

  16. Ling, X. & Zhang, J. Interference phenomenon in graphene-enhanced Raman scattering. J. Phys. Chem C 115, 2835–2840 (2010).

    Article  Google Scholar 

  17. Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  Google Scholar 

  18. Otakar, F. et al. Compression behavior of single-layer graphenes. ACS Nano 4, 3131–3138 (2010).

    Article  Google Scholar 

  19. Otakar, F. et al. Development of a universal stress sensor for graphene and carbon fibre. Nature Commun. 2, 255–261 (2011).

    Article  Google Scholar 

  20. Huang, M. et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).

    Article  CAS  Google Scholar 

  21. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  22. Berciaud, S., Ryu, S., Brus, L. E. & Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346–352 (2009).

    Article  CAS  Google Scholar 

  23. Lifshitz, R. & Cross, M. C. Nonlinear dynamics of nanomechanical and micromechanical resonators, in Review of Nonlinear Dynamics and Complexity (ed. Schuster, H. G.) (Wiley, 2008).

    Google Scholar 

  24. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, 1960).

    Google Scholar 

  25. Singh, V. et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 21, 165204 (2010).

    Article  Google Scholar 

  26. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  27. Pomeroy, J. W. et al. Dynamic operational stress measurement of MEMS using time-resolved Raman spectroscopy. J. Micro. Syst. 17, 1315–1321 (2008).

    Article  CAS  Google Scholar 

  28. Hosaka, H., Itao, K. & Kuroda, S. Damping characteristics of beam-shaped micro-oscillators. Sens. Actuat. A 49, 87–95 (1995).

    Article  CAS  Google Scholar 

  29. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  CAS  Google Scholar 

  30. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    Article  CAS  Google Scholar 

  31. Anetsberger, G. et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Phys. Rev. A 82, 1–4 (2010).

    Article  Google Scholar 

  32. Kasevich, M. & Chu, S. Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ANR (MolNanoSpin, Supergraph, Allucinan), ERC (advanced grant no. 226558), and the Nanosciences Foundation of Grenoble. Samples were fabricated in the NANOFAB facility of the Néel Institute. The authors thank A. Allain, D. Basko, C. Blanc, E. Bonet, O. Bourgeois, E. Collin, T. Crozes, L. Del-Rey, M. Deshmukh, E. Eyraud, C. Girit, R. Haettel, C. Hoarau, D. Jeguso, D. Lepoittevin, R. Maurand, J-F. Motte, R. Piquerel, Ph. Poncharal, V. Reita, A. Siria, C. Thirion, P. Vincent, R. Vincent and W. Wernsdorfer for help and discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.R.P., N.B. and V.B conceived and designed the experiments. A.R.P., L.M., N.B. and V.B. performed the experiments: A.R.P., O.A., N.B. and V.B. analysed the data. All authors contributed materials/analysis tools. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Vincent Bouchiat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2226 kb)

Supplementary information

Supplementary movie (MOV 5019 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reserbat-Plantey, A., Marty, L., Arcizet, O. et al. A local optical probe for measuring motion and stress in a nanoelectromechanical system. Nature Nanotech 7, 151–155 (2012). https://doi.org/10.1038/nnano.2011.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing