Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces

Abstract

Understanding thermal transport in nanostructured materials is important for the development of energy conversion applications1,2,3,4 and the thermal management of microelectronic and optoelectronic devices5. Most nanostructures interact through van der Waals interactions6, and these interactions typically lead to a reduction in thermal transport7,8,9,10. Here, we show that the thermal conductivity of a bundle of boron nanoribbons can be significantly higher than that of a single free-standing nanoribbon. Moreover, the thermal conductivity of the bundle can be switched between the enhanced values and that of a single nanoribbon by wetting the van der Waals interface between the nanoribbons with various solutions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HRTEM micrographs of an α-tetragonal boron nanoribbon.
Figure 2: SEM micrographs of six measured samples.
Figure 3: Comparison of thermal conductivities of single nanoribbons and double ribbon bundles.
Figure 4: Switchable thermal conductivity of double ribbon bundles.

Similar content being viewed by others

References

  1. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  2. Kim, D., Kim, Y., Choi, K., Grunlan, J. C. & Yu, C. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4, 513–523 (2010).

    Article  CAS  Google Scholar 

  3. Yao, Q., Chen, L., Zhang, W., Liufu, S. & Chen, X. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4, 2445–2451 (2010).

    Article  CAS  Google Scholar 

  4. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  CAS  Google Scholar 

  5. Ngo, Q. et al. Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Lett. 4, 2403–2407 (2004).

    Article  CAS  Google Scholar 

  6. Prasher, R. Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009).

    Article  Google Scholar 

  7. Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).

    Article  CAS  Google Scholar 

  8. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  CAS  Google Scholar 

  9. Estrada, D. & Pop, E. Imaging dissipation and hot spots in carbon nanotube network transistors. Appl. Phys. Lett. 98, 073102 (2011).

    Article  Google Scholar 

  10. Jin, Y. et al. Thermal boundary resistance of copper phthalocyanine–metal interface. Appl. Phys. Lett. 98, 093305 (2011).

    Article  Google Scholar 

  11. Hu, L. et al. Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations. Phys. Rev. B 81, 235427 (2010).

    Article  Google Scholar 

  12. Xu, T. T. et al. Crystalline boron nanoribbons: synthesis and characterization. Nano Lett. 4, 963–968 (2004).

    Article  CAS  Google Scholar 

  13. Chen, R. et al. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008).

    Article  Google Scholar 

  14. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  CAS  Google Scholar 

  15. Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003).

    Article  CAS  Google Scholar 

  16. Yu, C., Shi, L., Yao, Z., Li, D. & Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005).

    Article  CAS  Google Scholar 

  17. Krishna Moorthy, P. A. & Shivakumar, G. K. Approximations of Fuchs–Sondheimer theory for the case of total diffuse scattering in thin films. J. Mater. Sci. Lett. 1, 453–454 (1982).

    Article  Google Scholar 

  18. Asheghi, M., Touzelbaev, M. N., Goodson, K. E., Leung, Y. K. & Wong, S. S. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transfer 120, 30–36 (1998).

    Article  CAS  Google Scholar 

  19. Slack, G. A., Oliver, D. W. & Horn, F. H. Thermal conductivity of boron and some boron compounds. Phys. Rev. B 4, 1714–1720 (1971).

    Article  Google Scholar 

  20. Ploog, K., Schmidt, H., Amberger, E., Will, G. & Kossobutzki, K. H. B48B2C2 and B48B2N2, two non metal borides with structure of so called I tetragonal boron. J. Less Common Met. 29, 161–169 (1972).

    Article  CAS  Google Scholar 

  21. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nature Nanotech. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  22. Buks, E. & Roukes, M. L. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 033402 (2001).

    Article  Google Scholar 

  23. Wang, R. Y., Segalman, R. A. & Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006).

    Article  Google Scholar 

  24. Luo, T. & Lloyd, J. R. Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au–SAM–Au junctions. J. Heat Transfer 132, 032401 (2010).

    Article  Google Scholar 

  25. Coleman, H. W. & Steele, W. G. Experimentation and Uncertainty Analysis for Engineers 2nd edn (John Wiley & Sons, 1999).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the US National Science Foundation (grants 0800306, 0821604, 0800366, 0748090 and 1067213) and from Lockheed Martin Corporation under the program ‘Engineering & Technology University Research Initiatives’. R.P. acknowledges financial support from the Office of Naval Research through a MURI grant (N00014-07-1-0723). Part of this research was performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences with the help of J. Fowlkes. The authors thank C. Dames, L. Feldman and L. Shi for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., Y.Y. and S.W.W. performed thermal conductivity measurements. T.T.X. prepared the nanoribbons. Y.Y. and R.P. carried out the theoretical analysis. X.W. and H.Z. performed AFM studies and T.G. the TEM investigations. Y.J. carried out the nanoindentation procedure. J.Y., A.A.Z., R.P., Y.C., T.T.X. and D.L. contributed to data analysis and discussions. A.A.Z., T.T.X. and D.L. supervised the project and J.Y., R.P. and D.L. prepared the manuscript.

Corresponding authors

Correspondence to Ravi Prasher, Terry T. Xu or Deyu Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang, Y., Waltermire, S. et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nature Nanotech 7, 91–95 (2012). https://doi.org/10.1038/nnano.2011.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing