Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Microscopic reversibility as the organizing principle of molecular machines

Biological motors and pumps are equilibrium devices that couple chemical, electrical and mechanical processes in an environment that is far from equilibrium. Recognition of the key role played by microscopic reversibility in their operation is a first step towards rational design of artificial molecular devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of an ATP hydrolysis powered molecular walker.
Figure 2: An information ratchet that uses allosteric interactions as a mechanism for feedback between the opening and closing of gates and the position of a ring on a polymeric track.

References

  1. Von Delius, M. & Leigh, D. A. Chem. Soc. Rev. 40, 3656–3676 (2011).

    Article  CAS  Google Scholar 

  2. Hyeon, C. B. & Onuchic, J. Biophys. J. 101, 2749–2759 (2011).

    Article  CAS  Google Scholar 

  3. Astumian, R. D. & Bier, M. Biophys. J. 70, 637–653 (1996).

    Article  CAS  Google Scholar 

  4. Carter, N. J. & Cross, R. A. Nature 435, 308–312 (2005).

    Article  CAS  Google Scholar 

  5. Astumian, R. D. Biophys. J. 98, 2401–2409 (2010).

    Article  CAS  Google Scholar 

  6. Astumian, R. D. & Hanggi, P. Phys. Today 55, 33–39 (November 2002).

    Article  Google Scholar 

  7. Onsager, L. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  8. Ansari, A. et al. Proc. Natl Acad. Sci. USA 82, 5000–5004 (1985).

    Article  CAS  Google Scholar 

  9. Coskun, A., Banaszak, M., Astumian, R. D., Gryzbowski, B. & Stoddart, F. Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  10. Muddana, H. S., Sengupta, S., Mallouk, T. E., Sen, A. & Butler, P. J. J. Am. Chem. Soc. 132, 2110–2111 (2010).

    Article  CAS  Google Scholar 

  11. Astumian, R. D. & Derenyi, I. Eur. Biophys. J. 27, 474–489 (1998).

    Article  CAS  Google Scholar 

  12. Alvarez-Perez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. J. Am. Chem. Soc. 130, 1836–38 (2008).

    Article  CAS  Google Scholar 

  13. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Nature 424, 915–918 (2003).

    Article  CAS  Google Scholar 

  14. Bustamante, C., Cheng, W. & Mejia, Y. X. Cell 144, 480–497 (2011).

    Article  CAS  Google Scholar 

  15. Astumian, R. D. Am. J. Phys. 74, 683–688 (2006).

    Article  CAS  Google Scholar 

  16. Moore, P. Ann. Rev. Biophys. 41, 1–19 (2012).

    Article  CAS  Google Scholar 

  17. Astumian, R. D. Ann. Rev. Biophys. 40, 289–313 (2011).

    Article  CAS  Google Scholar 

  18. Share, A. I., Parimal, K. & Flood, A. H. J. Am. Chem. Soc. 132, 1665–1675 (2010).

    Article  CAS  Google Scholar 

  19. Kay, E. R., Leigh, D. A. & Zerbetto, F. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  20. Wang, J. & Feringa, B. L. Science 331, 1439–1441 (2011).

    Article  Google Scholar 

  21. Sengupta, S., Ibele, M. E. & Sen, A. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).

    Article  CAS  Google Scholar 

  22. International Union of Pure and Applied Chemists (IUPAC) Compendium of Chemical Terminology; http://goldbook.iupac.org

  23. Lehn, J. M. Chem. Eur. J. 12, 5910–5915 (2006).

    Article  CAS  Google Scholar 

  24. Purcell, E. Am. J. Phys. 45, 3–11 (1977).

    Article  Google Scholar 

  25. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful for very useful correspondence with Imre Derenyi, Chang-Bong Hyeon, Peter Moore, Dwayne Miller, Ayusman Sen, Sean Sun, and for useful discussions with Nicki Curthoys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dean Astumian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astumian, R. Microscopic reversibility as the organizing principle of molecular machines. Nature Nanotech 7, 684–688 (2012). https://doi.org/10.1038/nnano.2012.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing