Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A surface-anchored molecular four-level conductance switch based on single proton transfer

Abstract

The development of a variety of nanoscale applications1,2 requires the fabrication and control of atomic3,4,5 or molecular switches6,7 that can be reversibly operated by light8, a short-range force9,10, electric current11,12 or other external stimuli13,14,15. For such molecules to be used as electronic components, they should be directly coupled to a metallic support and the switching unit should be easily connected to other molecular species without suppressing switching performance. Here, we show that a free-base tetraphenyl-porphyrin molecule, which is anchored to a silver surface, can function as a molecular conductance switch. The saddle-shaped molecule has two hydrogen atoms in its inner cavity that can be flipped between two states with different local conductance levels using the electron current through the tip of a scanning tunnelling microscope. Moreover, by deliberately removing one of the hydrogens, a four-level conductance switch can be created. The resulting device, which could be controllably integrated into the surrounding nanoscale environment, relies on the transfer of a single proton and therefore contains the smallest possible atomistic switching unit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double proton transfer in 2H-TPP on Ag(111).
Figure 2: Sequential deprotonation of 2H-TPP on Ag(111).
Figure 3: Visualization of the four proton positions in 1H-TPP on Ag(111).
Figure 4: Current dependence of switching rate S for 2H-TPP and 1H-TPP recorded on an α-pyr position.
Figure 5: Voltage dependence of the switching rate S for 2H-TPP and 1H-TPP excited on an α-pyr position.

Similar content being viewed by others

References

  1. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  2. Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces. ChemPhysChem 9, 202–220 (2008).

    Article  CAS  Google Scholar 

  3. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    Article  CAS  Google Scholar 

  4. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  Google Scholar 

  5. Quaade, U. J., Stokbro, K., Thirstrup, C. & Grey, F. Mechanism of single atom switch on silicon. Surf. Sci. 415, L1037–L1045 (1998).

    Article  CAS  Google Scholar 

  6. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  7. Iancu, V. & Hla, S-W. Realization of a four-step molecular switch in scanning tunneling microscope manipulation of single chlorophyll-α molecules. Proc. Natl Acad. Sci. USA 103, 13718–13721 (2006).

    Article  CAS  Google Scholar 

  8. Wolf, M. & Tegeder, P. Reversible molecular switching at a metal surface: a case study of tetra-tert-butyl-azobenzene on Au(111). Surf. Sci. 603, 1506–1517 (2009).

    Article  CAS  Google Scholar 

  9. Loppacher, C. et al. Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003).

    Article  Google Scholar 

  10. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  Google Scholar 

  11. Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K-H. & Morgenstern, K. Reversible cistrans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 45, 603–606 (2006).

    Article  CAS  Google Scholar 

  12. Liljeroth, L., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphtalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  13. Pivetta, M., Ternes, M., Patthey, F. & Schneider, W-D. Diatomic molecular switches to enable the observation of very-low-energy vibrations. Phys. Rev. Lett. 99, 126104 (2007).

    Article  Google Scholar 

  14. Wäckerlin, C. et al. Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun. 1, 61 (2010).

    Article  Google Scholar 

  15. Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transition in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    Article  CAS  Google Scholar 

  16. Dolphin, D. (ed.) The Porphyrins (Academic, 1978).

    Google Scholar 

  17. Scudiero, L., Barlow, D. E. & Hipps, K. W. Physical properties and metal ion specific scanning tunneling microscopy images of metal(II) tetraphenylporphyrins deposited from vapor onto gold(111). J. Phys. Chem. B 104, 11899–11905 (2000).

    Article  CAS  Google Scholar 

  18. Auwärter, W. et al. Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111) Phys. Rev. B 81, 245403 (2010).

    Article  Google Scholar 

  19. Spillmann, H. et al. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 18, 275–279 (2006).

    Article  CAS  Google Scholar 

  20. Écija, D. et al. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins. ACS Nano 4, 4936–4942 (2010).

    Article  Google Scholar 

  21. Heim, D. et al. Self-assembly of flexible one-dimensional coordination polymers on metal surfaces. J. Am. Chem. Soc. 132, 6783–6790 (2010).

    Article  CAS  Google Scholar 

  22. Écija, D. et al. Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. Angew. Chem. Int. Ed. 50, 3872–3877 (2011).

    Article  Google Scholar 

  23. Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302, 77–81 (2003).

    Article  CAS  Google Scholar 

  24. Hennig, J. & Limbach, H-H. Kinetic study of hydrogen tunnelling in meso-tetraphenylporphine by nuclear magnetic resonance lineshape analysis and selective T1ρ-relaxation time measurements. J. Chem. Soc. Faraday Trans. 2 75, 752–766 (1979).

    Article  CAS  Google Scholar 

  25. Butenhoff, T. J. & Moore, C. B. Hydrogen atom tunneling in the thermal tautomerism of porphine imbedded in a n-hexane matrix. J. Am. Chem. Soc. 110, 8336–8341 (1988).

    Article  CAS  Google Scholar 

  26. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    Article  CAS  Google Scholar 

  27. Martin, M. et al. Mastering the molecular dynamics of a bistable molecule by single atom manipulation. Phys. Rev. Lett. 97, 216103 (2006).

    Article  CAS  Google Scholar 

  28. Seufert, K. et al. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nature Chem. 3, 114–119 (2011).

    Article  CAS  Google Scholar 

  29. Sperl, A., Kröger, J. & Berndt, R. Controlled metalation of a single adsorbed phthalocyanine. Angew. Chem. Int. Ed. 50, 5294–5297 (2011).

    Article  CAS  Google Scholar 

  30. Sarhan, A., Arboleda, N. B. Jr, David, M., Nakanishi, H. & Kasai, H. STM-induced switching of the hydrogen molecule in naphtalocyanine. J. Phys. Condens. Matter 21, 064201 (2009).

    Article  Google Scholar 

  31. Fu, Q., Yang, J. & Luo, Y. Mechanism for tautomerization induced conductance switching of naphthalocyanin molecule. Appl. Phys. Lett. 95, 182103 (2009).

    Article  Google Scholar 

  32. Baker, J., Kozlowski, P. M., Jarzecki, A. A. & Pulay, P. The inner-hydrogen migration in free base porphyrin. Theor. Chem. Acc. 97, 59–66 (1997).

    Article  CAS  Google Scholar 

  33. Braun, J., Hasenfratz, C., Schwesinger, R. & Limbach, H-H. Free acid porphyrin and its conjugated monoanion. Angew. Chem. Int. Ed. 33, 2215–2217 (1994).

    Article  Google Scholar 

  34. Ghosh, A. First-principles quantum chemical studies of porphyrins. Acc. Chem. Res. 31, 189–196 (1998).

    Article  CAS  Google Scholar 

  35. Maity, D. K., Bell, R. L. & Truong, T. N. Mechanism and quantum mechanical tunneling effect on inner hydrogen atom transfer in free base porphyrin: a direct ab initio dynamics study. J. Am. Chem. Soc. 122, 897–906 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Repp for helpful suggestions concerning the data analysis. The work was supported by the ERC Advanced Grant MolArt (no. 247299), TUM-IAS and the Munich Center for Advanced Photonics (MAP). N.S. acknowledges a scholarship from DAAD. D.E. thanks the European Commission for support through the Marie Curie IntraEuropean Fellowship for Career Development FP7 programme.

Author information

Authors and Affiliations

Authors

Contributions

K.S., W.A., F.B., D.E., S.V., S.J. and N.S. performed the STM experiments and analysed and interpreted the experimental data. F.K. supported the data analysis and contributed to the NEXAFS experiments. W.A., K.S. and J.V.B conceived the studies and co-wrote the paper.

Corresponding author

Correspondence to Willi Auwärter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auwärter, W., Seufert, K., Bischoff, F. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech 7, 41–46 (2012). https://doi.org/10.1038/nnano.2011.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing