Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The properties and applications of nanodiamonds

Abstract

Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detonation synthesis of nanodiamonds.
Figure 2: Structure of a single nanodiamond particle.
Figure 3: Raman spectroscopy and structure of nanodiamond.
Figure 4: Optical properties of nanodiamonds.
Figure 5: Surface modification.
Figure 6: Advanced atomic-level composite design with nanodiamond.
Figure 7: Nanodiamonds and drug delivery.

Similar content being viewed by others

References

  1. Danilenko, V. V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46, 595–599 (2004). This paper, by the inventor of detonation nanodiamond, describes the history of the discovery of nanodiamonds.

    CAS  Google Scholar 

  2. Greiner, N. R., Phillips, D. S., Johnson, J. D. & Volk, F. Diamonds in detonation soot. Nature 333, 440–442 (1988).

    CAS  Google Scholar 

  3. Ozawa, M. et al. Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007).

    CAS  Google Scholar 

  4. Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008). Luminescent nanodiamonds can be mass-produced by irradiating synthetic diamond nanocrystallites with He ions; nanodiamonds produced with this method have been used in a commercial product.

    CAS  Google Scholar 

  5. Mochalin, V. N. & Gogotsi, Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009).

    CAS  Google Scholar 

  6. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Google Scholar 

  7. Krueger, A. Diamond nanoparticles: Jewels for chemistry and physics. Adv. Mater. 20, 2445–2449 (2008).

    CAS  Google Scholar 

  8. Zheng, W. W. et al. Organic functionalization of ultradispersed nanodiamond: Synthesis and applications. J. Mater. Chem. 19, 8432–8441 (2009).

    CAS  Google Scholar 

  9. Spitsyn, B. V. et al. Inroad to modification of detonation nanodiamond. Diamond Relat. Mater. 15, 296–299 (2006).

    CAS  Google Scholar 

  10. Behler, K. D. et al. Nanodiamond–polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009).

    CAS  Google Scholar 

  11. Zhang, Q. et al. Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011). This paper reports that a nanodiamond–poly( L -lactic acid) composite can be used for bone tissue engineering.

    Google Scholar 

  12. Wang, D. H., Tan, L. S., Huang, H. J., Dai, L. M. & Osawa, E. In-situ nanocomposite synthesis: Arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether–ketone) in polyphosphoric acid. Macromolecules 42, 114–124 (2009).

    CAS  Google Scholar 

  13. Cheng, J. L., He, J. P., Li, C. X. & Yang, Y. L. Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater. 20, 4224–4230 (2008).

    CAS  Google Scholar 

  14. Mochalin, V. N. et al. Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011). Demonstration of covalent incorporation of aminated nanodiamond into epoxy, resulting in a composite with improved mechanical properties.

    CAS  Google Scholar 

  15. Shimkunas, R. A. et al. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009).

    CAS  Google Scholar 

  16. Purtov, K. V., Petunin, A. I., Burov, A. E., Puzyr, A. P. & Bondar, V. S. Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5, 631–636 (2010).

    CAS  Google Scholar 

  17. Alhaddad, A. et al. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011).

    CAS  Google Scholar 

  18. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). Nanodiamonds can be purified by the selective oxidation of non-diamond carbon in air; this method has been used to produce high-purity nanodiamond powders on an industrial scale.

    CAS  Google Scholar 

  19. Shenderova, O. et al. Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115, 9827–9837 (2011). Comprehensive description of the distinctive properties of ozone-purified detonation nanodiamond.

    CAS  Google Scholar 

  20. Schrand, A. M. et al. in Safety of Nanoparticles. From Manufacturing to Medical Applications. Nanostructure Science and Technology (ed. Webster, T. J.) 159–187 (Springer, 2009).

    Google Scholar 

  21. Schrand, A. M., Hens, S. A. C. & Shenderova, O. A. Nanodiamond particles: Properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009).

    CAS  Google Scholar 

  22. Schrand, A. M. et al. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 111, 2–7 (2007).

    CAS  Google Scholar 

  23. Yang, G. W., Wang, J. B. & Liu, Q. X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Mat. 10, 7923–7927 (1998).

    CAS  Google Scholar 

  24. Boudou, J. P. et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009).

    Google Scholar 

  25. Frenklach, M. et al. Induced nucleation of diamond powder. Appl. Phys. Lett. 59, 546–548 (1991).

    CAS  Google Scholar 

  26. Gogotsi, Y. G. et al. Structure of carbon produced by hydrothermal treatment of β-SiC powder. J. Mater. Chem. 6, 595–604 (1996).

    CAS  Google Scholar 

  27. Welz, S., Gogotsi, Y. & McNallan, M. J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 93, 4207–4214 (2003).

    CAS  Google Scholar 

  28. Daulton, T. L., Kirk, M. A., Lewis, R. S. & Rehn, L. E. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B 175, 12–20 (2001).

    Google Scholar 

  29. Banhart, F. & Ajayan, P. M. Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433–435 (1996).

    CAS  Google Scholar 

  30. Galimov, É. et al. Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys. 49, 150–153 (2004).

    CAS  Google Scholar 

  31. Guillois, O., Ledoux, G. & Reynaud, C. Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L136 (1999).

    CAS  Google Scholar 

  32. Goto, M. et al. Spatially resolved 3 μm spectroscopy of Elias 1: Origin of diamonds in protoplanetary disks. Astrophys. J. 693, 610–616 (2009).

    CAS  Google Scholar 

  33. Dahl, J. E., Liu, S. G. & Carlson, R. M. K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003).

    CAS  Google Scholar 

  34. Vaijayanthimala, V. & Chang, H. C. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4, 47–55 (2009).

    CAS  Google Scholar 

  35. Xing, Y. & Dai, L. Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009).

    CAS  Google Scholar 

  36. Barnard, A. S. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134, 1751–1764 (2009).

    CAS  Google Scholar 

  37. Hui, Y. Y., Cheng, C-L. & Chang, H-C. Nanodiamonds for optical bioimaging. J. Phys. D 43, 374021 (2010).

    Google Scholar 

  38. Viecelli, J. A., Bastea, S., Glosli, J. N. & Ree, F. H. Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives. J. Chem. Phys. 115, 2730–2736 (2001).

    CAS  Google Scholar 

  39. Danilenko, V. V. in Synthesis, Properties and Applications of Ultrananocrystalline Diamond (Proceedings of NATO Advanced Research Workshop) (eds Gruen, D. Shenderova O. & Vul', A.) 181–198 (Springer, 2005).

    Google Scholar 

  40. Badziag, P., Verwoerd, W. S., Ellis, W. P. & Greiner, N. R. Nanometre-sized diamonds are more stable than graphite. Nature 343, 244–245 (1990).

    CAS  Google Scholar 

  41. Barnard, A. S., Russo, S. P. & Snook, I. K. Structural relaxation and relative stability of nanodiamond morphologies. Diamond Relat. Mater. 12, 1867–1872 (2003).

    CAS  Google Scholar 

  42. Barnard, A. S. & Sternberg, M. Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007).

    CAS  Google Scholar 

  43. Raty, J. Y. & Galli, G. Ultradispersity of diamond at the nanoscale. Nature Mater. 2, 792–795 (2003).

    CAS  Google Scholar 

  44. Lai, L. & Barnard, A. S. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 3, 2566–2575 (2011).

    CAS  Google Scholar 

  45. Lai, L. & Barnard, A. S. Stability of nanodiamond surfaces exposed to N, NH, and NH2 . J. Phys. Chem. C 115, 6218–6228, (2011).

    CAS  Google Scholar 

  46. Aleksenskiy, A., Baidakova, M., Osipov, V. & Vul', A. in Nanodiamonds. Applications in Biology and Nanoscale Medicine (ed. Ho, D.) 55–79 (Springer, 2010).

    Google Scholar 

  47. Vlasov, I. I. et al. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010).

    CAS  Google Scholar 

  48. Shenderova, O. A. & Gruen, D. M. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, 2006). First book in English on Russian research on detonation nanodiamonds.

    Google Scholar 

  49. Dolmatov, V. Y. Detonation synthesis ultradispersed diamonds: Properties and applications. Usp. Khim. 70, 687–708 (2001).

    Google Scholar 

  50. Williams, O. A. et al. Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824–4830 (2010).

    CAS  Google Scholar 

  51. Ho, D. Nanodiamonds Applications in Biology and Nanoscale Medicine. (Springer, 2010).

    Google Scholar 

  52. Fedyanina, O. N. & Nesterenko, P. N. Regularities of chromatographic retention of phenols on microdispersed sintered detonation nanodiamond in aqueous-organic solvents. Russ. J. Phys. Ch. A 84, 476–480 (2010).

    CAS  Google Scholar 

  53. Huang, H., Pierstorff, E., Osawa, E. & Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007).

    CAS  Google Scholar 

  54. Osawa, E. Recent progress and perspectives in single-digit nanodiamond. Diamond Relat. Mater. 16, 2018–2022 (2007). Review article on the deagglomeration of detonation nanodiamond into 4–5 nm nanoparticles.

    CAS  Google Scholar 

  55. Aleksenskiy, A. E., Eydelman, E. D. & Vul, A. Y. Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011).

    CAS  Google Scholar 

  56. Pentecost, A., Gour, S., Mochalin, V., Knoke, I. & Gogotsi, Y. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010).

    CAS  Google Scholar 

  57. Krueger, A., Stegk, J., Liang, Y. J., Lu, L. & Jarre, G. Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond. Langmuir 24, 4200–4204 (2008).

    CAS  Google Scholar 

  58. Liang, Y. J. et al. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 354, 23–30 (2011).

    CAS  Google Scholar 

  59. Bondar, V. S. & Puzyr, A. P. Nanodiamonds for biological investigations. Phys. Solid State 46, 716–719 (2004).

    CAS  Google Scholar 

  60. Shenderova, O. et al. Modification of detonation nanodiamonds by heat treatment in air. Diamond Relat. Mater. 15, 1799–1803 (2006).

    CAS  Google Scholar 

  61. Larionova, I. et al. Properties of individual fractions of detonation nanodiamond. Diamond Relat. Mater. 15, 1804–1808 (2006).

    CAS  Google Scholar 

  62. Grichko, V., Tyler, T., Grishko, V. I. & Shenderova, O. Nanodiamond particles forming photonic structures. Nanotechnology 19, 225201 (2008).

    Google Scholar 

  63. Morita, Y. et al. A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008).

    CAS  Google Scholar 

  64. Meinhardt, T., Lang, D., Dill, H. & Krueger, A. Pushing the functionality of diamond nanoparticles to new horizons: Orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 21, 494–500 (2011).

    CAS  Google Scholar 

  65. Krueger, A. The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485–1492 (2008).

    CAS  Google Scholar 

  66. Arnault, J. C. Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. Phys. Chem. Chem. Phys. 13, 11481–11487 (2011).

    CAS  Google Scholar 

  67. Liu, Y., Gu, Z. N., Margrave, J. L. & Khabashesku, V. N. Functionalization of nanoscale diamond powder: Fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16, 3924–3930 (2004).

    CAS  Google Scholar 

  68. Lisichkin, G., Korol'kov, V., Tarasevich, B., Kulakova, I. & Karpukhin, A. Photochemical chlorination of nanodiamond and interaction of its modified surface with C-nucleophiles. Russ. Chem. Bull. 55, 2212–2219 (2006).

    CAS  Google Scholar 

  69. Krueger, A. & Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diamond Relat. Mater. 17, 1367–1370 (2008).

    CAS  Google Scholar 

  70. Liang, Y. J., Ozawa, M. & Krueger, A. A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009).

    CAS  Google Scholar 

  71. Krueger, A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chem. Eur. J. 14, 1382–1390 (2008).

    CAS  Google Scholar 

  72. Kruger, A., Liang, Y. J., Jarre, G. & Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006).

    Google Scholar 

  73. Jarre, G., Liang, Y. J., Betz, P., Lang, D. & Krueger, A. Playing the surface game-Diels-Alder reactions on diamond nanoparticles. Chem. Commun. 47, 544–546 (2011).

    CAS  Google Scholar 

  74. Yeap, W. S., Chen, S. M. & Loh, K. P. Detonation nanodiamond: An organic platform for the Suzuki coupling of organic molecules. Langmuir 25, 185–191 (2009).

    CAS  Google Scholar 

  75. Mochalin, V., Osswald, S. & Gogotsi, Y. Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem. Mater. 21, 273–279 (2009).

    CAS  Google Scholar 

  76. Kulakova, I. Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004).

    CAS  Google Scholar 

  77. Jiang, T. L., Xu, K. & Ji, S. F. FTIR studies on the spectral changes of the surface functional groups of ultradispersed diamond powder synthesized by explosive detonation after treatment in hydrogen, nitrogen, methane and air at different temperatures. J. Chem. Soc. Faraday Trans. 92, 3401–3406 (1996).

    CAS  Google Scholar 

  78. Ji, S. F., Jiang, T. L., Xu, K. & Li, S. B. FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 133, 231–238 (1998).

    CAS  Google Scholar 

  79. Korolkov, V. V., Kulakova, I. I., Tarasevich, B. N. & Lisichkin, G. V. Dual reaction capacity of hydrogenated nanodiamond. Diamond Relat. Mater. 16, 2129–2132 (2007).

    CAS  Google Scholar 

  80. Ferrari, A. C. & Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. A 362, 2477–2512, (2004).

    CAS  Google Scholar 

  81. Mykhaylyk, O. O., Solonin, Y. M., Batchelder, D. N. & Brydson, R. Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, X-ray diffraction, small-angle X-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 97, 074302 (2005).

    Google Scholar 

  82. Obraztsova, E. D. et al. Raman and photoluminescence investigations of nanograined diamond films. Nanostruct. Mater. 6, 827–830 (1995).

    Google Scholar 

  83. Yushin, G. N., Osswald, S., Padalko, V. I., Bogatyreva, G. P. & Gogotsi, Y. Effect of sintering on structure of nanodiamond. Diamond Relat. Mater. 14, 1721–1729 (2005).

    CAS  Google Scholar 

  84. Osswald, S., Mochalin, V. N., Havel, M., Yushin, G. & Gogotsi, Y. Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80, 075419 (2009).

    Google Scholar 

  85. Li, W. F., Irle, S. & Witek, H. A. Convergence in the evolution of nanodiamond Raman spectra with particle size: A theoretical investigation. ACS Nano 4, 4475–4486 (2010).

    CAS  Google Scholar 

  86. Filik, J. et al. Raman spectroscopy of nanocrystalline diamond: An ab initio approach. Phys. Rev. B 74, 035423 (2006).

    Google Scholar 

  87. Korobov, M. V., Avramenko, N. V., Bogachev, A. G., Rozhkova, N. N. & Osawa, E. Nanophase of water in nano-diamond gel. J. Phys. Chem. C 111, 7330–7334 (2007).

    CAS  Google Scholar 

  88. Rondin, L. et al. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).

    Google Scholar 

  89. Slepetz, B., Laszlo, I., Gogotsi, Y., Hyde-Volpe, D. & Kertesz, M. Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys. Chem. Chem. Phys. 12, 14017–14022 (2010).

    CAS  Google Scholar 

  90. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    CAS  Google Scholar 

  91. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Google Scholar 

  92. Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    CAS  Google Scholar 

  93. Tisler, J. et al. Highly efficient FRET from single NV center in nanodiamonds to single organic molecule. ACS Nano 5, 7893–7898 (2011).

    CAS  Google Scholar 

  94. Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    CAS  Google Scholar 

  95. Shenderova, O. et al. Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J. Phys. Chem. C 115, 14014–14024 (2011).

    CAS  Google Scholar 

  96. Baranov, P. G. et al. Enormously high concentrations of fluorescent nitrogen-vacancy centers fabricated by sintering of detonation nanodiamonds. Small 7, 1533–1537 (2011).

    CAS  Google Scholar 

  97. Hens, S. C. et al. Nanodiamond bioconjugate probes and their collection by electrophoresis. Diamond Relat. Mater. 17, 1858–1866 (2008).

    CAS  Google Scholar 

  98. Huang, L. C. L. & Chang, H. C. Adsorption and immobilization of cytochrome C on nanodiamonds. Langmuir 20, 5879–5884 (2004).

    CAS  Google Scholar 

  99. Schrand, A. M., Lin, J. B., Hens, S. C. & Hussain, S. M. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3, 435–445 (2011).

    CAS  Google Scholar 

  100. Faklaris, O. et al. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009).

    CAS  Google Scholar 

  101. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011).

    CAS  Google Scholar 

  102. Yuan, Y. et al. Pulmonary toxicity and translocation of nanodiamonds in mice. Diamond Relat. Mater. 19, 291–299 (2010).

    CAS  Google Scholar 

  103. Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C. & Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). Demonstration of the biocompatibility of nanodiamond in worm models.

    CAS  Google Scholar 

  104. Chow, E. K. et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). Demonstration that nanodiamonds can enable significant improvements to drug delivery efficacy and safety in multiple tumour models in vivo.

    Google Scholar 

  105. Shenderova, O., Hens, S. & McGuire, G. Seeding slurries based on detonation nanodiamond in DMSO. Diamond Relat. Mater. 19, 260–267 (2010).

    CAS  Google Scholar 

  106. Manus, L. M. et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2010).

    CAS  Google Scholar 

  107. Saini, G. et al. Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography. Anal. Chem. 82, 4448–4456 (2010).

    CAS  Google Scholar 

  108. Wu, C. C., Han, C. C. & Chang, H. C. Applications of surface-functionalized diamond nanoparticles for mass-spectrometry-based proteomics. J. Chin. Chem. Soc. 57, 583–594 (2010).

    CAS  Google Scholar 

  109. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotech. 5, 651–654 (2010).

    CAS  Google Scholar 

  110. Shenderova, O. et al. Detonation nanodiamond and onion-like carbon: Applications in composites. Phys. Status Solidi A 205, 2245–2251 (2008).

    CAS  Google Scholar 

  111. Shenderova, O. et al. Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat. Mater. 16, 1213–1217 (2007).

    CAS  Google Scholar 

  112. Su, D. S. et al. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon 45, 2145–2151 (2007).

    CAS  Google Scholar 

  113. Zhang, J. A. et al. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 49, 8640–8644 (2010).

    CAS  Google Scholar 

  114. Holt, K. B. Diamond at the nanoscale: Applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. Roy. Soc. A 365, 2845–2861 (2007).

    CAS  Google Scholar 

  115. Huang, H., Dai, L., Wang, D. H., Tan, L-S. & Osawa, E. Large-scale self-assembly of dispersed nanodiamonds. J. Mater. Chem. 18, 1347–1352 (2008).

    CAS  Google Scholar 

  116. Ivanov, M. G., Pavlyshko, S. V., Ivanov, D. M., Petrov, I. & Shenderova, O. Synergistic compositions of colloidal nanodiamond as lubricant-additive. J Vac. Sci. Technol. B 28, 869–877 (2010).

    CAS  Google Scholar 

  117. Chou, C. C. & Lee, S. H. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear 269, 757–762 (2010).

    CAS  Google Scholar 

  118. Kato, T., Lin, W. M. & Osawa, E. Lubrication property of single-digit-nanodiamond in an aqueous colloid. J. Jpn. Soc. Tribol. 54, 122–129 (2009).

    CAS  Google Scholar 

  119. Matsumoto, N., Joly-Pottuz, L., Kinoshita, H. & Ohmae, N. Application of onion-like carbon to micro and nanotribology. Diamond Relat. Mater. 16, 1227–1230 (2007).

    CAS  Google Scholar 

  120. Neitzel, I., Mochalin, V., Knoke, I., Palmese, G. R. & Gogotsi, Y. Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011).

    CAS  Google Scholar 

  121. Maitra, U., Prasad, K. E., Ramamurty, U. & Rao, C. N. R. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 149, 1693–1697 (2009).

    CAS  Google Scholar 

  122. Zhang, Q., Naito, K., Tanaka, Y. & Kagawa, Y. Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008).

    CAS  Google Scholar 

  123. Lee, J. Y., Lim, D. P. & Lim, D. S. Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites B 38, 810–816 (2007).

    Google Scholar 

  124. Stravato, A., Knight, R., Mochalin, V. & Picardi, S. C. HVOF-sprayed nylon-11 + nanodiamond composite coatings: Production and characterization. J. Therm. Spray Technol. 17, 812–817 (2008).

    CAS  Google Scholar 

  125. Morimune, S., Kotera, M., Nishino, T., Goto, K. & Hata, K. Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44, 4415–4421 (2011).

    CAS  Google Scholar 

  126. Li, L., Davidson, J. L. & Lukehart, C. M. Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44, 2308–2315 (2006).

    CAS  Google Scholar 

  127. Zhang, X. Q. et al. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009).

    CAS  Google Scholar 

  128. Chen, M. et al. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 1, 3167–3171 (2010).

    CAS  Google Scholar 

  129. Li, X. et al. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J. Mater. Chem. 21, 7966–7973 (2011).

    CAS  Google Scholar 

  130. Liu, K. K. et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010).

    Google Scholar 

  131. Zhang, X-Q. et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 23, 4770–4775 (2011).

    CAS  Google Scholar 

  132. Huang, H. J., Pierstorff, E., Osawa, E. & Ho, D. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2, 203–212 (2008).

    CAS  Google Scholar 

  133. Lam, R. et al. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008).

    CAS  Google Scholar 

  134. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    CAS  Google Scholar 

  135. Osswald, S., Havel, M., Mochalin, V., Yushin, G. & Gogotsi, Y. Increase of nanodiamond crystal size by selective oxidation. Diamond Relat. Mater. 17, 1122–1126 (2008).

    CAS  Google Scholar 

  136. Thalhammer, A., Edgington, R. J., Cingolani, L. A., Schoepfer, R. & Jackman, R. B. The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials 31, 2097–2104 (2010).

    CAS  Google Scholar 

  137. Liu, Y., Khabashesku, V. N. & Halas, N. J. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J. Am. Chem. Soc. 127, 3712–3713 (2005).

    CAS  Google Scholar 

  138. Lisichkin, G. V., Kulakova, I. I., Gerasimov, Y. A., Karpukhin, A. V. & Yalkovlev, R. Y. Halogenation of detonation-synthesised nanodiamond surfaces. Mendeleev Commun. 19, 309–310 (2009).

    CAS  Google Scholar 

  139. Kuznetsov, V. L., Chuvilin, A. L., Butenko, Y. V., Malkov, I. Y. & Titov, V. M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222, 343–348 (1994).

    CAS  Google Scholar 

  140. Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007).

    CAS  Google Scholar 

  141. Panich, A. M. et al. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D 44, 125303 (2011).

    Google Scholar 

  142. Merkel, T. J. & DeSimone, J. M. Dodging drug-resistant cancer with diamonds. Sci. Transl. Med. 3, 73ps8 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank our students and post-docs who helped to collect data and to write and revise the paper, and V. Danilenko for useful discussions. V.N.M. and Y.G. acknowledge support from the National Science Foundation (CMMI-0927963, nanodiamond–polymer composites) and from FIRST (Fluid Interface Reactions, Structures and Transport), an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences (nanodiamond chemistry, graphitization and carbon nanoonions). O.S. was supported in part by the Space and Naval Warfare Systems Centers (N66001-04-1-8933) and the Army Research Laboratory (W911NF-04-2-0023). D.H. was supported by the National Science Foundation (CMMI-0846323, CMMI-0856492, DMI-0327077, DMR-1105060), the National Center for Learning and Teaching, the V Foundation for Cancer Research Scholars Award, the Wallace H. Coulter Foundation Translational Research Award, National Cancer Institute (U54CA151880 and 1R01CA159178-01) and the EU Framework Programme (FP7-KBBE-2009-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Gogotsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochalin, V., Shenderova, O., Ho, D. et al. The properties and applications of nanodiamonds. Nature Nanotech 7, 11–23 (2012). https://doi.org/10.1038/nnano.2011.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing