Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics

Subjects

Abstract

Handling and mixing ultrasmall volumes of reactants in parallel can increase the throughput1,2 and complexity3 of screening assays while simultaneously reducing reagent consumption1. Microfabricated silicon and plastic can provide reliable fluidic devices4,5,6,7,8, but cannot typically handle total volumes smaller than 1 × 10–12 l. Self-assembled soft matter nanocontainers9,10,11,12,13,14,15,16 can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions17. Here, we show that small unilamellar lipid vesicles can be used to mix volumes as small as 1 × 10–19 l in a reproducible and highly parallelized fashion. The self-enclosed nanoreactors are functionalized with lipids of opposite charge to achieve reliable fusion. Single vesicles encapsulating one set of reactants are immobilized on a glass surface and then fused with diffusing vesicles of opposite charge that carry a complementary set of reactants. We find that 85% of the 1 × 106 cm–2 surface-tethered nanoreactors undergo non-deterministic fusion, which is leakage-free in all cases, and the system allows up to three to four consecutive mixing events per nanoreactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mixing of subattolitre volumes by fusion of SUVs of opposite charge.
Figure 2: Characterization of operational performance of the platform.
Figure 3: Consecutive mixing events triggered in single target reactors.

Similar content being viewed by others

References

  1. Metzker, M. L. Sequencing technologies—the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    Article  CAS  Google Scholar 

  2. Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug. Discov. 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  3. Sauer, S. et al. Miniaturization in functional genomics and proteomics. Nature Rev. Genet. 6, 465–476 (2005).

    Article  CAS  Google Scholar 

  4. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  5. Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  Google Scholar 

  6. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

  7. Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    Article  CAS  Google Scholar 

  8. Walt, D. R. Fibre optic microarrays. Chem. Soc. Rev. 39, 38–50 (2010).

    Article  CAS  Google Scholar 

  9. Chiu, D. T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    Article  CAS  Google Scholar 

  10. Lizana, L. et al. Controlling chemistry by geometry in nanoscale systems. Annu. Rev. Phys. Chem. 60, 449–468 (2009).

    Article  CAS  Google Scholar 

  11. Miller, O. J. et al. Directed evolution by in vitro compartmentalization. Nature Methods 3, 561–570 (2006).

    Article  CAS  Google Scholar 

  12. van Dongen, S. F. M. et al. Biohybrid polymer capsules. Chem. Rev. 109, 6212–6274 (2009).

    Article  CAS  Google Scholar 

  13. Bolinger, P. Y., Stamou, D. & Vogel, H. An integrated self-assembled nanofluidic system for controlled biological chemistries. Angew. Chem. Int. Ed. 47, 5544–5549 (2008).

    Article  CAS  Google Scholar 

  14. Cisse, I., Okumus, B., Joo, C. & Ha, T. J. Fueling protein–DNA interactions inside porous nanocontainers. Proc. Natl Acad. Sci. USA 104, 12646–12650 (2007).

    Article  CAS  Google Scholar 

  15. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46, 7378–7382 (2007).

    Article  CAS  Google Scholar 

  16. Chiu, D. T. & Lorenz, R. M. Chemistry and biology in femtoliter and picoliter volume droplets. Acc. Chem. Res. 42, 649–658 (2009).

    Article  CAS  Google Scholar 

  17. Christensen, S. M. & Stamou, D. Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter 3, 828–836 (2007).

    Article  CAS  Google Scholar 

  18. Boukobza, E., Sonnenfeld, A. & Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170 (2001).

    Article  CAS  Google Scholar 

  19. Stamou, D., Duschl, C., Delamarche, E. & Vogel, H. Self-assembled microarrays of attoliter molecular vessels. Angew. Chem. Int. Ed. 42, 5580–5583 (2003).

    Article  CAS  Google Scholar 

  20. Lei, G. H. & MacDonald, R. C. Lipid bilayer vesicle fusion: intermediates captured by high-speed microfluorescence spectroscopy. Biophys. J. 85, 1585–1599 (2003).

    Article  CAS  Google Scholar 

  21. Bendix, P. M., Pedersen, M. S. & Stamou, D. Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 106, 12341–12346 (2009).

    Article  CAS  Google Scholar 

  22. Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nature Chem. Biol. 5, 835–841 (2009).

    Article  CAS  Google Scholar 

  23. Lohse, B., Bolinger, P. Y. & Stamou, D. Encapsulation efficiency measured on single small unilamellar vesicles. J. Am. Chem. Soc. 130, 14372–14373 (2008).

    Article  CAS  Google Scholar 

  24. Kunding, A. H., Mortensen, M. W., Christensen, S. M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

    Article  CAS  Google Scholar 

  25. Yoon, T. Y. et al. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  Google Scholar 

  26. Christensen, S. M., Mortnesen, M. W. & Stamou, D. G. Single vesicle assaying of SNARE-synaptotagmin-driven fusion reveals fast and slow modes of both docking and fusion and intrasample heterogeneity. Biophys. J. 100, 957–967 (2011).

    Article  CAS  Google Scholar 

  27. Haluska, C. K. et al. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc. Natl Acad. Sci. USA 103, 15841–15846 (2006).

    Article  CAS  Google Scholar 

  28. Chan, Y. H. M., van Lengerich, B. & Boxer, S. G. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3, Fa17–Fa21 (2008).

    Article  CAS  Google Scholar 

  29. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nature Chem. Biol. 5, 647–654 (2009).

    Article  CAS  Google Scholar 

  30. Zhou, H. X., Rivas, G. N. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.S. would like to acknowledge financial support from the Lundbeck Foundation Center for Biomembranes in Nanomedicine, the Danish Councils for Independent and Strategic Research and the University of Copenhagen programmes of excellence ‘UNIK Synthetic Biology’, ‘Single Molecule Nanoscience’ and ‘BioScaRT’.

Author information

Authors and Affiliations

Authors

Contributions

D.S. designed and supervised the project. S.M.C. and P-Y.B. conducted most experiments and data analysis and contributed equally to this work. S.M.C. and D.S. wrote the paper. All authors helped design experiments, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dimitrios Stamou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, S., Bolinger, PY., Hatzakis, N. et al. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotech 7, 51–55 (2012). https://doi.org/10.1038/nnano.2011.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing