Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomechanics of functional and pathological amyloid materials

Abstract

Amyloid or amyloid-like fibrils represent a general class of nanomaterials that can be formed from many different peptides and proteins. Although these structures have an important role in neurodegenerative disorders, amyloid materials have also been exploited for functional purposes by organisms ranging from bacteria to mammals. Here we review the functional and pathological roles of amyloid materials and discuss how they can be linked back to their nanoscale origins in the structure and nanomechanics of these materials. We focus on insights both from experiments and simulations, and discuss how comparisons between functional protein filaments and structures that are assembled abnormally can shed light on the fundamental material selection criteria that lead to evolutionary bias in multiscale material design in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hierarchical structure of amyloid materials.
Figure 2: Classification of amyloid materials.
Figure 3: Mechanical properties of amyloid fibrils in comparison to biological and inorganic or non-biological materials.
Figure 4: Fragmentation, aggregation and the kinetics of amyloid growth.
Figure 5: Examples of functional synthetic amyloid materials.

Similar content being viewed by others

References

  1. Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–32 (1999).

    CAS  Google Scholar 

  2. Jaroniec, C. P. et al. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl Acad. Sci.USA 101, 711–716 (2004).

    CAS  Google Scholar 

  3. Luhrs, T. et al. 3D structure of Alzheimer's amyloid-beta(1–42) fibrils. Proc. Natl Acad. Sci.USA 102, 17342–17347 (2005).

    CAS  Google Scholar 

  4. Sawaya, M. R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    CAS  Google Scholar 

  5. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008). Refs 2–5: structures of the amyloid cross-beta motifs illustrate many of the key characteristics of amyloid materials in atomic detail.

    CAS  Google Scholar 

  6. Sipe, J. D. & Cohen, A. S. Review: History of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000).

    CAS  Google Scholar 

  7. Tan, S. Y. & Pepys, M. B. Amyloidosis. Histopathology 25, 403–414 (1994).

    CAS  Google Scholar 

  8. Selkoe, D. J. Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  Google Scholar 

  9. Antzutkin, O. N. et al. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Proc. Natl Acad. Sci.USA 97, 13045–13050 (2000).

    CAS  Google Scholar 

  10. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    CAS  Google Scholar 

  11. Tsai, H. H. et al. Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proc. Natl Acad. Sci. USA 102, 8174–8179 (2005).

    CAS  Google Scholar 

  12. Pepys, M. B. Amyloidosis. Ann. Rev. Med. 57, 223–241 (2006).

    CAS  Google Scholar 

  13. Zanuy, D., Gunasekaran, K., Lesk, A. M. & Nussinov, R. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices. J. Mol. Biol. 358, 330–45 (2006).

    CAS  Google Scholar 

  14. Paravastu, A. K., Leapman, R. D., Yau, W. M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

    CAS  Google Scholar 

  15. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–66 (2006). Overview of the principles of protein folding and misfolding.

    CAS  Google Scholar 

  16. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006). Functional amyloid in the synthesis of melanin.

    Google Scholar 

  17. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid-from bacteria to humans. Trends Biochem. Sci. 32, 217–24 (2007).

    CAS  Google Scholar 

  18. Kelly, J. W. & Balch, W. E. Amyloid as a natural product. J. Cell Biol. 161, 461–462 (2003).

    CAS  Google Scholar 

  19. Mostaert, A. S., Higgins, M. J., Fukuma, T., Rindi, F. & Jarvis, S. P. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. 32, 393–401 (2006).

    CAS  Google Scholar 

  20. Watt, B. et al. N-terminal domains elicit formation of functional Pmel17 amyloid fibrils. J. Biol. Chem. 284, 35543–35555 (2009).

    CAS  Google Scholar 

  21. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  Google Scholar 

  22. Fandrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    CAS  Google Scholar 

  23. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–90 (2003).

    CAS  Google Scholar 

  24. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Mater. 9, 359–367 (2010).

    CAS  Google Scholar 

  25. Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

    CAS  Google Scholar 

  26. Salvetat, J. P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    CAS  Google Scholar 

  27. Kis, A. et al. Nanomechanics of microtubules. Phys. Rev. Lett. 89, 248101 (2002).

    CAS  Google Scholar 

  28. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci.USA 103, 15806–15811 (2006).

    CAS  Google Scholar 

  29. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Google Scholar 

  30. Wang, J. C. et al. Micromechanics of isolated sickle cell hemoglobin fibers: Bending moduli and persistence lengths. J. Mol. Biol. 315, 601–612 (2002).

    CAS  Google Scholar 

  31. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech. 5, 423–428 (2010).

    CAS  Google Scholar 

  32. Knowles, T. P. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    CAS  Google Scholar 

  33. Meersman, F., Cabrera, R. Q., McMillan, P. F. & Dmitriev, V. Compressibility of insulin amyloid fibrils determined by X-ray diffraction in a diamond anvil cell. High Pressure Res. 29, 665–670 (2009).

    CAS  Google Scholar 

  34. Sachse, C., Grigorieff, N. & Fandrich, M. Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined by electron cryo-microscopy. Angew. Chem. Int. Ed. 49, 1321–1323 (2010).

    CAS  Google Scholar 

  35. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007). Determination of the rigidities of nanofibrils formed from a wide range of peptides and proteins.

    CAS  Google Scholar 

  36. Park, J., Kahng, B., Kamm, R. D. & Hwang, W. Atomistic simulation approach to a continuum description of self-assembled beta-sheet filaments. Biophys. J. 90, 2510–2524 (2006).

    CAS  Google Scholar 

  37. Paparcone, R., Keten, S. & Buehler, M. J. Atomistic simulation of nanomechanical properties of Alzheimer's A beta(1–40) amyloid fibrils under compressive and tensile loading. J. Biomechanics 43, 1196–1201 (2010).

    Google Scholar 

  38. Relini, A. et al. Detection of populations of amyloid-like protofibrils with different physical properties. Biophys. J. 98, 1277–1284 (2010).

    CAS  Google Scholar 

  39. Guo, S. & Akhremitchev, B. B. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7, 1630–1636 (2006).

    CAS  Google Scholar 

  40. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307, 262–265 (2005).

    CAS  Google Scholar 

  41. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006). Role of fibril fragmentation and nanomechanics in the propagation of yeast prion fibrils.

    CAS  Google Scholar 

  42. Dzwolak, W., Smirnovas, V., Jansen, R. & Winter, R. Insulin forms amyloid in a strain-dependent manner: An FT-IR spectroscopic study. Protein Sci. 13, 1927–1932 (2004).

    CAS  Google Scholar 

  43. Sigurdson, C. J. et al. Prion strain discrimination using luminescent conjugated polymers. Nature Meth. 4, 1023–1030 (2007). Luminescent conjugated polymers as powerful probes of polymorphism in protein aggregates.

    CAS  Google Scholar 

  44. Paparcone, R., Cranford, S. W. & Buehler, M. J. Self-folding and aggregation of amyloid fibrils Nanoscale 3, 1748–1755 (2011).

    CAS  Google Scholar 

  45. Huang, Y. Y., Knowles, T. P. J. & Terentjev, E. M. Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv. Mater. 21, 3945–3948 (2009).

    CAS  Google Scholar 

  46. Streltsov, V. X-ray absorption and diffraction studies of the metal binding sites in amyloid beta-peptide. Eur. Biophys. J. 37, 257–263 (2008).

    CAS  Google Scholar 

  47. Ackbarow, T., Chen, X., Keten, S. & Buehler, M. J. Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc. Natl Acad. Sci. USA 104, 16410–16415 (2007).

    CAS  Google Scholar 

  48. Ma, B. & Nussinov, R. Stabilities and conformations of Alzheimer's beta-amyloid peptide oligomers (Abeta 16–22, Abeta 16–35, and Abeta 10–35): Sequence effects. Proc. Natl Acad. Sci. USA 99, 14126–14131 (2002).

    CAS  Google Scholar 

  49. Periole, X., Rampioni, A., Vendruscolo, M. & Mark, A. E. Factors that affect the degree of twist in beta-sheet structures: a molecular dynamics simulation study of a cross-beta filament of the GNNQQNY peptide. J. Phys. Chem. B 113, 1728–1737 (2009).

    CAS  Google Scholar 

  50. Lee, C. F., Loken, J., Jean, L. & Vaux, D. J. Elongation dynamics of amyloid fibrils: A rugged energy landscape picture. Phys. Rev. E 80, 041906 (2009).

    Google Scholar 

  51. Wei, G. H., Mousseau, N. & Derreumaux, P. Computational simulations of the early steps of protein aggregation. Prion 1, 3–8 (2007).

    Google Scholar 

  52. Xu, Z., Paparcone, R. & Buehler, M. J. Alzheimer's abeta(1–40) amyloid fibrils feature size-dependent mechanical properties. Biophys. J. 98, 2053–2062 (2010).

    CAS  Google Scholar 

  53. Auer, S. et al. Importance of metastable states in the free energy landscapes of polypeptide chains. Phys. Rev. Lett. 99, 178104 (2007).

    Google Scholar 

  54. Xu, Z. & Buehler, M. J. Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins. Phys. Rev. E 81, 061910 (2010).

    Google Scholar 

  55. Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Google Scholar 

  56. Ashby, M. F., Gibson, L. J., Wegst, U. & Olive, R. The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. Lond. A 450, 123–140 (1995).

    Google Scholar 

  57. Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Phil. Mag. 84, 2167–2181 (2004).

    CAS  Google Scholar 

  58. Kreplak, L., Bar, H., Leterrier, J. F., Herrmann, H. & Aebi, U. Exploring the mechanical behavior of single intermediate filaments. J. Mol. Biol. 354, 569–577 (2005).

    CAS  Google Scholar 

  59. Yang, L. et al. Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. A 82, 160–168 (2007).

    Google Scholar 

  60. Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R. & Eppell, S. J. Stress-strain experiments on individual collagen fibrils. Biophys. J. 95, 3956–3963 (2008).

    CAS  Google Scholar 

  61. Slotta, U. et al. Spider silk and amyloid fibrils: A structural comparison. Macromol. Biosci. 7, 183–188 (2007).

    CAS  Google Scholar 

  62. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    CAS  Google Scholar 

  63. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    Google Scholar 

  64. Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol. Cell 23, 425–438 (2006).

    CAS  Google Scholar 

  65. Paparcone, R. & Buehler, M. J. Failure of A-beta-(1–40) amyloid fibrils under tensile loading. Biomaterials 32, 3367–3374 (2011). Molecular mechanisms of failure of amyloid fibrils and influence of fibril length on mechanical properties.

    CAS  Google Scholar 

  66. Aguzzi, A. Cell biology: Beyond the prion principle. Nature 459, 924–925 (2009).

    CAS  Google Scholar 

  67. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    CAS  Google Scholar 

  68. Riek, R. Cell biology: infectious Alzheimer's disease? Nature 444, 429–431 (2006).

    CAS  Google Scholar 

  69. Eisele, Y. S. et al. Peripherally applied A beta-containing inoculates induce cerebral beta-amyloidosis. Science 330, 980–982 (2010).

    CAS  Google Scholar 

  70. Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783–790 (2009).

    CAS  Google Scholar 

  71. Koffie, R. M. et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009).

    CAS  Google Scholar 

  72. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  Google Scholar 

  73. Gebbink, M. F. B. G., Claessen, D., Bouma, B., Dijkhuizen, L. & Wosten, H. A. B. Amyloids - A functional coat for microorganisms. Nature Rev. Microbiol. 3, 333–341 (2005).

    CAS  Google Scholar 

  74. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009). Discovery of functional amyloid in the endocrine system.

    CAS  Google Scholar 

  75. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002). Involvement of functional amyloid in bacterial biofilm production.

    CAS  Google Scholar 

  76. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nature Rev. Genet. 6, 435–450 (2005).

    CAS  Google Scholar 

  77. Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).

    CAS  Google Scholar 

  78. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    CAS  Google Scholar 

  79. Hammer, N. D., Schmidt, J. C. & Chapman, M. R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc. Natl Acad. Sci. USA 104, 12494–12499 (2007).

    CAS  Google Scholar 

  80. Zhang, S. G., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

    CAS  Google Scholar 

  81. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    CAS  Google Scholar 

  82. Lovett, M. et al. Silk fibroin microtubes for blood vessel engineering. Biomaterials 28, 5271–5279 (2007).

    CAS  Google Scholar 

  83. Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743–748 (2008).

    CAS  Google Scholar 

  84. MacPhee, C. E. & Dobson, C. M. Formation of mixed fibrils demonstrates the generic nature and potential utility of amyloid nanostructures. J. Am. Chem. Soc. 122, 12707–12713 (2000).

    CAS  Google Scholar 

  85. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003). Directing metal deposition through self-assembling peptide scaffolds.

    CAS  Google Scholar 

  86. Carny, O., Shalev, D. E. & Gazit, E. Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 6, 1594–1597 (2006).

    CAS  Google Scholar 

  87. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    CAS  Google Scholar 

  88. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003). Synthesis of metallic nanowires through self-assembling peptide scaffolds.

    CAS  Google Scholar 

  89. Niu, L. J., Chen, X. Y., Allen, S. & Tendler, S. J. B. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23, 7443–7446 (2007).

    CAS  Google Scholar 

  90. Reches, M. & Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195–200 (2006).

    CAS  Google Scholar 

  91. Adler-Abramovich, L. et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotech. 4, 849–854 (2009).

    CAS  Google Scholar 

  92. Hamley, I. W. et al. Alignment of a model amyloid peptide fragment in bulk and at a solid surface. J. Phys. Chem. B 114, 8244–8254 (2010).

    CAS  Google Scholar 

  93. Knowles, T. P. J., Oppenheim, T., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured biofilms from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotech. 5, 204–207 (2010).

    CAS  Google Scholar 

  94. Barrau, S. et al. Integration of amyloid nanowires in organic solar cells. Appl. Phys. Lett. 93, 023307 (2008).

    Google Scholar 

  95. Channon, K. J., Devlin, G. L. & MacPhee, C. E. Efficient energy transfer within self-assembling peptide fibers: A route to light-harvesting nanomaterials. J. Am. Chem. Soc. 131, 12520–12521 (2009).

    CAS  Google Scholar 

  96. Liang, Y. et al. Light harvesting antenna on an amyloid scaffold. Chem. Commun. 6522–6524 (2008).

  97. Maji, S. K. et al. Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol. 6, e17 (2008).

    Google Scholar 

  98. Holmes, T. C. et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97, 6728–6733 (2000).

    CAS  Google Scholar 

  99. Ellis-Behnke, R. G. et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA 103, 5054–5059 (2006). Refs 98 and 99: tissue engineering using amyloid scaffolds.

    CAS  Google Scholar 

  100. Gras, S. L. et al. Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29, 1553–1562 (2008).

    CAS  Google Scholar 

  101. Gimona, M. Protein linguistics - a grammar for modular protein assembly? Nature Rev. Mol. Cell Biol. 7, 68–73 (2006).

    CAS  Google Scholar 

  102. Diaz-Avalos, R. et al. Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. J. Mol. Biol. 330, 1165–1175 (2003).

    CAS  Google Scholar 

  103. Hemingway, E. The Old Man and the Sea (Vintage Books, 2007).

    Google Scholar 

  104. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  Google Scholar 

  105. Galkin, V. E., Orlova, A., Cherepanova, O., Lebart, M-C. & Ebelman, E. H. High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. Proc. Natl Acad. Sci. USA 105, 1494–1498 (2008).

    CAS  Google Scholar 

  106. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E. & Downing, K. H. Microtubule structure at 8 A resolution. Structure 10, 1317–1328 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

T.P.J.K. acknowledges support from St John's College, Cambridge. M.J.B. acknowledges support from the Office of Naval Research (YIP and PECASE Awards), National Science Foundation (CAREER), Army Research Office and the Air Force Office of Scientific Research. We also acknowledge helpful discussions with D. Kaplan, A. Aguzzi, L. Luheshi, D. White and C. Dobson.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuomas P. J. Knowles or Markus J. Buehler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, T., Buehler, M. Nanomechanics of functional and pathological amyloid materials. Nature Nanotech 6, 469–479 (2011). https://doi.org/10.1038/nnano.2011.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing