Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-surface sensors for real-time probing of cellular environments

Subjects

Abstract

The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of PDGF aptamer sensors in solution.
Figure 2: Anchoring the engineered aptamer sensor to the cell surface.
Figure 3: Aptamer sensor functions on the cell surface.
Figure 4: Spatial-temporal imaging of a single MSC functionalized with the quench sensor demonstrates that PDGF sensing correlates with data generated from a computational model.
Figure 5: Real-time sensing of PDGF secretion from neighbouring MDA-MB-231 cells by sensor-engineered MSCs.
Figure 6: Bone marrow homing and transmigration of aptamer-labelled MSCs.

Similar content being viewed by others

References

  1. Halin, C., Mora, J., Sumen, C. & von Andrian, U. In vivo imaging of lymphocyte trafficking. Annu. Rev. Cell. Dev. Biol. 21, 581–603 (2005).

    Article  CAS  Google Scholar 

  2. Karp, J. M. & Teo, G. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216 (2009).

    Article  CAS  Google Scholar 

  3. Ferreira, L., Karp, J. M., Nobre, L. & Langer, R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3, 136–146 (2008).

    Article  CAS  Google Scholar 

  4. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  Google Scholar 

  5. Cook, B. N. & Bertozzi, C. R. Chemical approaches to the investigation of cellular systems. Bioorg. Med. Chem. 10, 829–840 (2002).

    Article  CAS  Google Scholar 

  6. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  Google Scholar 

  7. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nature Methods 2, 171–176 (2005).

    Article  CAS  Google Scholar 

  8. Pollok, B. A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  Google Scholar 

  9. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nature Nanotech. 4, 325–330 (2009).

    Article  CAS  Google Scholar 

  10. Albizu, L. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chem. Biol. 6, 587–594 (2010).

    Article  CAS  Google Scholar 

  11. Rider, T. et al. A B cell-based sensor for rapid identification of pathogens. Science 301, 213–215 (2003).

    Article  CAS  Google Scholar 

  12. Beigi, R., Kobatake, E., Aizawa, M. & Dubyak, G. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am. J. Physiol. Cell Physiol. 276, C267–C278 (1999).

    Article  CAS  Google Scholar 

  13. Orynbayeva, Z. et al. Visualization of membrane processes in living cells by surface-attached chromatic polymer patches. Angew. Chem. Int. Ed. 44, 1092–1096 (2005).

    Article  CAS  Google Scholar 

  14. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  15. Ellington, A. & Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  16. Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948–1998 (2009).

    Article  CAS  Google Scholar 

  17. Zhao, W., Brook, M. & Li, Y. Design of gold nanoparticle based colorimetric biosensing assays. ChemBioChem 9, 2363–2371 (2008).

    Article  CAS  Google Scholar 

  18. Sefah, K. et al. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 134, 1765–1775 (2009).

    Article  CAS  Google Scholar 

  19. Nutiu, R. & Li, Y. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44, 1061–1065 (2005).

    Article  CAS  Google Scholar 

  20. Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nature Rev. Drug Discov. 9, 573–550 (2010).

    Google Scholar 

  21. Fang, X. & Tan, W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc. Chem. Res. 43, 48–57.

  22. Dhar, S., Kolishetti, N., Lippard, S. J. & Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl Acad. Sci. USA 108, 1850–1855.

  23. Ankrum, J. & Karp, J. M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16, 203–209 (2010).

    Article  Google Scholar 

  24. López Ponte, A. et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737–1745 (2007).

    Article  Google Scholar 

  25. Beckermann, B. et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 99, 622–631 (2008).

    Article  CAS  Google Scholar 

  26. Ball, S. G., Shuttleworth, C. A. & Kielty, C. M. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J. Cell. Mol. Med. 11, 1012–1030 (2007).

    Article  CAS  Google Scholar 

  27. Fang, X., Sen, A., Vicens, M. & Tan, W. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 4, 829–834 (2003).

    Article  CAS  Google Scholar 

  28. Vicens, M., Sen, A., Vanderlaan, A., Drake, T. & Tan, W. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem 6, 900–907 (2005).

    Article  CAS  Google Scholar 

  29. Green, L. S. et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413–14424 (1996).

    Article  CAS  Google Scholar 

  30. Adams, G. B. et al. Haematopoietic stem cells depend on Gα(s)-mediated signalling to engraft bone marrow. Nature 459, 103–107 (2009).

    Article  CAS  Google Scholar 

  31. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–97 (2009).

    Article  CAS  Google Scholar 

  32. Lo Celso, C., Wu, J. W. & Lin, C. P. In vivo imaging of hematopoietic stem cells and their microenvironment. J. Biophoton. 2, 619–631 (2009).

    Article  Google Scholar 

  33. Sarkar, D. et al. Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug. Chem. 19, 2105–2109 (2008).

    Article  CAS  Google Scholar 

  34. Sarkar, D. et al. Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31, 5266–5274 (2010).

    Article  CAS  Google Scholar 

  35. Zhao, W. et al. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell–cell interactions. FASEB J. doi:10.1096/fj.10-178384 (2011).

  36. Lai, R. Y., Plaxco, K. W. & Heeger, A. J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem. 79, 229–233 (2007).

    Article  CAS  Google Scholar 

  37. Leitzel, K. et al. Elevated plasma platelet-derived growth factor B-chain levels in cancer patients. Cancer. Res. 51, 4149–4154 (1991).

    CAS  Google Scholar 

  38. Ogunniyi, A. O., Story, C. M., Papa, E., Guillen, E. & Love, J. C. Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nature Protoc. 4, 767–782 (2009).

    Article  CAS  Google Scholar 

  39. Au, P. et al. Paradoxical effects of PDGF-BB overexpression in endothelial cells on engineered blood vessels in vivo. Am. J. Pathol. 175, 294–302 (2009).

    Article  CAS  Google Scholar 

  40. Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  Google Scholar 

  41. Jayasena, S. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650 (1999).

    CAS  Google Scholar 

  42. Cox, J. C., Rudolph, P. & Ellington, A. D. Automated RNA selection. Biotechnol. Prog. 14, 845–850 (1998).

    Article  CAS  Google Scholar 

  43. Lou, X. et al. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl Acad. Sci. USA 106, 2989–2994 (2009).

    Article  CAS  Google Scholar 

  44. Kim, G., Kim, K., Oh, M. & Sung, Y. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20, 175503 (2009).

    Article  Google Scholar 

  45. Tang, Z. et al. Aptamer switch probe based on intramolecular displacement. J. Am. Chem. Soc. 130, 11268–11269 (2008).

    Article  CAS  Google Scholar 

  46. Hui, E. & Bhatia, S. Micromechanical control of cell–cell interactions. Proc. Natl Acad. Sci. USA 104, 5722–5726 (2007).

    Article  CAS  Google Scholar 

  47. Zhao, W., Gao, Y., Kandadai, S. A., Brook, M. A. & Li, Y. DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew. Chem. Int. Ed. 45, 2409–2413 (2006).

    Article  CAS  Google Scholar 

  48. Hayashi, S., Hazama, A., Dutta, A. K., Sabirov, R. Z. & Okada, Y. Detecting ATP release by a biosensor method. Sci. STKE 2004, pl14 (2004).

    Google Scholar 

  49. Zhao, W., Teo, G., Kumar, N. & Karp, J. Chemistry and material science at the cell surface. Mater. Today 13, 14–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Lei Xu and Dannie Wang for the preparation of PDGF-producing MDA-MB-231 cells. This work was supported by the National Institutes of Health (NIH; grants nos. HL097172, HL095722 and DE019191 to J.M.K., grants nos. HL082792 and NS059348 to J.L., and grant no. NIAID 5RC1AI086152 to J.C.L.), by the Charles A. Dana Foundation (J.C.L.) and by the American Heart Association (grant no. 0970178N to J.M.K.). W.Z. is supported by an International Human Frontier Science Program Organization postdoctoral fellowship. Y.J.Y. holds a National Science Foundation Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and J.M.K. are responsible for study concept and design. W.Z., J.M.K., J.L., J.C.L., C.P.L., D.S. and R.K. prepared the manuscript. W.Z., S.S., J.C., Y.J.Y., M.L.L., S.B., A.L.C., J.A.P, W.T., I.A.D. and C.C. carried out experiments and performed data analysis. R.K.J. provided genetically engineered cells.

Corresponding author

Correspondence to Jeffrey M. Karp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Schafer, S., Choi, J. et al. Cell-surface sensors for real-time probing of cellular environments. Nature Nanotech 6, 524–531 (2011). https://doi.org/10.1038/nnano.2011.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing