Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deconfinement leads to changes in the nanoscale plasticity of silicon

Abstract

Silicon crystals have an important role in the electronics industry, and silicon nanoparticles have applications in areas such as nanoelectromechanical systems, photonics and biotechnology1,2. However, the elastic–plastic transition observed in silicon is not fully understood; in particular, it is not known if the plasticity of silicon is determined by dislocations or by transformations between phases. Here, based on compression experiments and molecular dynamics simulations, we show that the mechanical properties of bulk silicon3,4,5,6 and silicon nanoparticles are significantly different. We find that bulk silicon exists in a state of relative constraint, with its plasticity dominated by phase transformations, whereas silicon nanoparticles are less constrained and display dislocation-driven plasticity. This transition, which we call deconfinement, can also explain the absence of phase transformations in deformed silicon nanowedges7,8. Furthermore, the phenomenon is in agreement with effects observed in shape-memory alloy nanopillars9, and provides insight into the origin of incipient plasticity10,11,12,13,14,15,16,17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical response of nanodeformed silicon from bulk to nanoparticles.
Figure 2: Mechanical response of a compressed silicon nanoparticle.
Figure 3: MD-simulated contrasting behaviour of confined (bulk) and deconfined (nanoparticle) silicon.
Figure 4: Effect of deconfinement of silicon from bulk to nanosphere viewed in terms of stress analysis.
Figure 5: Schematic of silicon deconfinement process scaled with the pressure of the Si-II → Si-XII/III + α-Si phase transition.

Similar content being viewed by others

References

  1. Ting, Z. & Li, J. Ultra-strength materials. Progr. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  2. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  3. Domnich, V., Gogotsi, Y. & Dub, S. Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214–2216 (2000).

    Article  CAS  Google Scholar 

  4. Juliano, T., Domnich, V. & Gogotsi, Y. Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: a statistical study. J. Mater. Res. 19, 3099–3108 (2004).

    Article  CAS  Google Scholar 

  5. Chang, L. & Zhang, L. C. Deformation mechanisms at pop-out in monocrystalline silicon under nanoindentation. Acta Mater. 57, 2148–2153 (2009).

    Article  CAS  Google Scholar 

  6. Bradby, J. E., Williams, J. S. & Swain, M. V. In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).

    Article  Google Scholar 

  7. Minor, A. M. et al. Room temperature dislocation plasticity in silicon. Phil. Mag. 85, 323–330 (2005).

    Article  CAS  Google Scholar 

  8. Ge, D., Minor, A. M., Stach, E. A. & Morris, J. W. Size effects in the nanoindentation of silicon at ambient temperature. Phil. Mag. 86, 4069–4080 (2006).

    Article  Google Scholar 

  9. San Juan, J., No, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotech. 4, 415–419 (2009).

    Article  CAS  Google Scholar 

  10. Li, J., Van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  CAS  Google Scholar 

  11. Szlufarska, I. Nakano, A. & Vashishta, P. A Crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911–914 (2005).

    Article  CAS  Google Scholar 

  12. Schuh, C. A. Mason, J. K. & Lund, A. C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater. 4, 617–621 (2005).

    Article  CAS  Google Scholar 

  13. Mason, J. K., Lund, A. C. & Schuh, C. A. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).

    Article  Google Scholar 

  14. Gerberich, W. W. & Mook, W. M. Nanomechanics: a new picture of plasticity. Nature Mater. 4, 577–578 (2005).

    Article  CAS  Google Scholar 

  15. Gerberich, W. W. et al. Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979–992 (2003).

    Article  CAS  Google Scholar 

  16. Gerberich, W. W. et al. Reverse plasticity in single crystal silicon nanospheres. Int. J. Plast. 21, 2391–2405 (2005).

    Article  CAS  Google Scholar 

  17. Chrobak, D., Nordlund, K. & Nowak, R. Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98, 045502 (2007).

    Article  CAS  Google Scholar 

  18. Valentini, P., Gerberich, W. W. & Dumitrica, T. Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 (2007).

    Article  CAS  Google Scholar 

  19. Nowak, R. et al. An electric current spike linked to nanoscale plasticity. Nature Nanotech. 4, 287–291 (2009).

    Article  CAS  Google Scholar 

  20. Nowak, R., Yoshida, F., Chrobak, D., Kurzydlowski, K. J., Takagi T. & Sasaki, T. in Encyclopedia of Nanoscience and Nanotechnology (ed. Nalwa, S. H.) 313–374 (American Scientific, 2010).

  21. Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    Article  CAS  Google Scholar 

  22. Godet, J., Pizzagalli, L., Brochard, S. & Beauchamp, P. Theoretical study of dislocation nucleation from simple surface defects in semiconductors. Phys. Rev. B 70, 054109 (2004).

    Article  Google Scholar 

  23. Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).

    Article  CAS  Google Scholar 

  24. Bazant, M. Z., Kaxiras, E. & Justo, J. F. Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 56, 8542–8552 (1997).

    Article  CAS  Google Scholar 

  25. Hertz, H. Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882).

    Google Scholar 

  26. Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).

    Article  CAS  Google Scholar 

  27. Li, X., Ono, T. & Wang, Y. & Esashi, M. Ultrathin single crystalline silicon cantilever resonators: fabrication technology and significant specimen size effect on Young's modulus, Appl. Phys. Lett. 83, 3081–3083 (2003).

    Article  CAS  Google Scholar 

  28. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C. & Foiles, S. M. Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001).

    Article  CAS  Google Scholar 

  29. Choi, Y., Van Vliet, K. J., Li, J. & Suresh, S. Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94, 6050–6058 (2003).

    Article  CAS  Google Scholar 

  30. Wu, Y. Q. & Xu, Y. B. Lattice-distortion-induced amorphization in indented [110] silicon. J. Mater. Res. 14, 682–687 (1999).

    Article  CAS  Google Scholar 

  31. Lorenz, D. et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  32. Piltz, R. O. et al. Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072–4085 (1995).

    Article  CAS  Google Scholar 

  33. Rao, N. P. et al. Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide. J. Aerosol Sci. 29, 707–720 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CSC–IT Center for Science for computation resources and the Ceramic Society of Japan for invaluable assistance. R.N., D.C. and N.T. thank the Academy of Finland for partial support under the FINNANO programme and NANOSPIKE research project. A.B. and W.W.G. acknowledge the support of the National Science Foundation (NSF; CTS-0506748 and CMMI-00800896). R.N. acknowledges the involvement of the Research Foundation of Helsinki University of Technology, as well as the NANOINDENT EU-research grant. D.C. and R.N. thank R. Nieminen and K. Niihara for valuable discussions. The authors also thank A. Poludniak for careful reading of the manuscript and stimulating comments.

Author information

Authors and Affiliations

Authors

Contributions

D.C. carried out the calculations and analysed the compatibility of the theoretical and experimental data. R.N. conceived the concept of deconfinement-driven transition and designed the research project. N.T. analysed the data. W.W.G. designed and supervised the experimental part, and A.B. and O.U. performed nanocompression tests and analysed the output. R.N. and D.C. wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to Roman Nowak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1484 kb)

Supplementary information

Supplementary movie 1 (AVI 2636 kb)

Supplementary information

Supplementary movie 2 (AVI 3534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrobak, D., Tymiak, N., Beaber, A. et al. Deconfinement leads to changes in the nanoscale plasticity of silicon. Nature Nanotech 6, 480–484 (2011). https://doi.org/10.1038/nnano.2011.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing