Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cold-atom scanning probe microscopy

Abstract

Scanning probe microscopes are widely used to study surfaces with atomic resolution in many areas of nanoscience. Ultracold atomic gases trapped in electromagnetic potentials can be used to study electromagnetic interactions between the atoms and nearby surfaces in chip-based systems. Here we demonstrate a new type of scanning probe microscope that combines these two areas of research by using an ultracold gas as the tip in a scanning probe microscope. This cold-atom scanning probe microscope offers a large scanning volume, an ultrasoft tip of well-defined shape and high purity, and sensitivity to electromagnetic forces (including dispersion forces near nanostructured surfaces). We use the cold-atom scanning probe microscope to non-destructively measure the position and height of carbon nanotube structures and individual free-standing nanotubes. Cooling the atoms in the gas to form a Bose–Einstein condensate increases the resolution of the device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cold-atom SPM.
Figure 2: Magnetic conveyor belt for nanopositioning the cold-atom probe tips near nanostructures.
Figure 3: Contact mode.
Figure 4: Cold-atom SPM image of nanostructures.
Figure 5: Measuring the length of a single nanotube in contact mode.
Figure 6: Measuring the lateral position of a single nanotube in dynamic mode.

Similar content being viewed by others

References

  1. Bhushan, B. Handbook of Nanotechnology (Springer, 2010).

    Book  Google Scholar 

  2. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  3. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  4. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  CAS  Google Scholar 

  5. Binnig, G. & Rohrer, H. Scanning tunneling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987).

    Article  CAS  Google Scholar 

  6. Kaiser, W. J. & Bell, L. D. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 60, 1406–1409 (1988).

    Article  CAS  Google Scholar 

  7. Martin, Y. & Wickramasinghe, H. Magnetic imaging by force microscopy with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987).

    Article  Google Scholar 

  8. Xu, J., Laeuger, K., Dransfeld, K. & Wilson, I. Thermal sensors for investigation of heat transfer in scanning probe microscopy. Rev. Sci. Instrum. 65, 2262–2266 (1994).

    Article  CAS  Google Scholar 

  9. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    Article  CAS  Google Scholar 

  10. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    Article  CAS  Google Scholar 

  11. Ouyang, Z., Hu, J., Chen, S., Sun, J. & Li, M. Molecular patterns by manipulating DNA molecules. J. Vac. Sci. Technol. B 15, 1385–1387 (1997).

    Article  CAS  Google Scholar 

  12. Günther, A. et al. Combined chips for atom optics. Phys. Rev. A 71, 063619 (2005).

    Article  Google Scholar 

  13. Wildermuth, S. et al. Microscopic magnetic-field imaging. Nature 435, 440 (2005).

    Article  CAS  Google Scholar 

  14. Aigner, S. et al. Long-range order in electronic transport through disordered metal films. Science 319, 1226–1229 (2008).

    Article  CAS  Google Scholar 

  15. McGuirk, J. M., Harber, D. M., Obrecht, J. M. & Cornell, E. A. Alkali–metal adsorbate polarization on conducting and insulating surfaces probed with Bose–Einstein condensates. Phys. Rev. A 69, 062905 (2004).

    Article  Google Scholar 

  16. Tauschinsky, A., Thijssen, R. M. T., Whitlock, S., van Linden van den Heuvell, H. B. & Spreeuw, R. J. C. Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010).

    Article  Google Scholar 

  17. Biercuk, M. J., Uys, H., Britton, J. W., VanDevender, A. P. & Bollinger, J. J. Ultrasensitive detection of force and displacement using trapped ions. Nature Nanotech. 5, 646–650 (2010).

    Article  CAS  Google Scholar 

  18. Jones, M. P. A., Vale, C. J., Sahagun, D., Hall, B. V. & Hinds, E. A. Spin coupling between cold atoms and the thermal fluctuations of a metal surface. Phys. Rev. Lett. 91, 080401 (2003).

    Article  CAS  Google Scholar 

  19. Kasch, B. et al. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit. New. J. Phys. 12, 065024 (2010).

    Article  Google Scholar 

  20. Scheel, S. & Buhmann, S. Y. Macroscopic quantum electrodynamics—concepts and applications. Acta Physica Slovaca 58, 675–809 (2008).

    CAS  Google Scholar 

  21. Antezza, M., Pitaevskii, L. P. & Stringari, S. Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate. Phys. Rev. A. 70, 053619 (2004).

    Article  Google Scholar 

  22. Obrecht, J. M. et al. Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007).

    Article  CAS  Google Scholar 

  23. Cornell, E. A. & Wieman, C. E. Nobel Lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    Article  CAS  Google Scholar 

  24. Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    Article  CAS  Google Scholar 

  25. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    Article  Google Scholar 

  26. Dalfovo, F., Giorgini, S., Pitaevskii, L. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  CAS  Google Scholar 

  27. Fortágh, J., Ott, H., Kraft, S., Günther, A. & Zimmermann, C. Bose–Einstein condensates in magnetic waveguides. Appl. Phys. B 76, 157–163 (2003).

    Article  Google Scholar 

  28. Li, W. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    Article  CAS  Google Scholar 

  29. Ren, Z. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  CAS  Google Scholar 

  30. Ketterle, W., Durfee, D. & Stamper-Kurn, D. Making, probing and understanding Bose–Einstein condensates. Proceedings of the International School of Physics—Enrico Fermi (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS, 1999).

    Google Scholar 

  31. Hunger, D. et al. Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator. Phys. Rev. Lett. 104, 143002 (2010).

    Article  Google Scholar 

  32. Lin, Y., Teper, I., Chin, C. & Vuletić, V. Impact of the Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004).

    Article  Google Scholar 

  33. Druzhinina, V., Mudrich, M., Arnecke, F., Madroñero, J. & Buchleitner, A. Thermal disequilibrium effects in quantum reflection. Phys. Rev. A 82, 032714 (2010).

    Article  Google Scholar 

  34. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Oxford Univ. Press, 2003).

  35. Jackson, J. D. Classical Electrodynamics, 2nd edn (Wiley, 1975).

    Google Scholar 

  36. Wimberger, S. et al. Topical issue: hybrid quantum systems—new perspectives on quantum state control. Euro Phys. J. D, (in the press).

  37. Singh, M. et al. One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B 41, 065301 (2008).

    Article  Google Scholar 

  38. Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749–4752 (2000).

    Article  CAS  Google Scholar 

  39. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    Article  CAS  Google Scholar 

  40. Hommelhoff, P., Hänsel, W., Steinmetz, T., Hänsch, T. & Reichel, J. Transporting, splitting and merging of atomic ensembles in a chip trap. New J. Phys. 7, 3 (2005).

    Article  Google Scholar 

  41. Farkas, D. M. et al. A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates. Appl. Phys. Lett. 96, 093102 (2010).

    Article  Google Scholar 

  42. Günther, A., Bender, H., Stibor, A., Fortágh, J. & Zimmermann, C. Observing quantum gases in real time: single-atom detection on a chip. Phys. Rev. A 80, 011604 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Scheel, R. Walser and H. Hölscher for helpful discussions. The project was funded by the BMBF (NanoFutur 03X5506). M.G. acknowledges financial support from the Evangelisches Studienwerk e.V. Villigst, P.S. from the Studienstiftung des Deutschen Volkes, and A.G. and T.E.J. from the Baden-Württemberg RiSC programme.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and J.F. contributed to the experimental idea and supervised the project. M.G., P.S., A.G. and J.F. designed and set up the experiment. G.V., M.H. and D.P.K. fabricated the nano structures. M.G., P.S. and P.F. performed the experiments. M.G., P.S., T.E.J., A.G. and J.F. analysed the data. All authors discussed the results.

Corresponding authors

Correspondence to A. Günther or J. Fortágh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierling, M., Schneeweiss, P., Visanescu, G. et al. Cold-atom scanning probe microscopy. Nature Nanotech 6, 446–451 (2011). https://doi.org/10.1038/nnano.2011.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing