Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable subradiant lattice plasmons by out-of-plane dipolar interactions

Abstract

Plasmonic nanostructures concentrate optical fields into nanoscale volumes1,2, which is useful for plasmonic nanolasers3,4, surface enhanced Raman spectroscopy5,6 and white-light generation7. However, the short lifetimes of the emissive plasmons correspond to a rapid depletion of the plasmon energy, preventing further enhancement of local optical fields. Dark (subradiant) plasmons8,9,10,11,12 have longer lifetimes, but their resonant wavelengths cannot be tuned over a broad wavelength range without changing the overall geometry of the nanostructures. Also, fabrication of the nanostructures cannot be readily scaled because their complex shapes have subwavelength dimensions. Here, we report a new type of subradiant plasmon with a narrow (5 nm) resonant linewidth that can be easily tuned by changing the height of large (>100 nm) gold nanoparticles arranged in a two-dimensional array. At resonance, strong coupling between out-of-plane nanoparticle dipolar moments suppresses radiative decay, trapping light in the plane of the array and strongly localizing optical fields on each nanoparticle. This new mechanism can open up applications for subradiant plasmons because height-controlled nanoparticle arrays can be manufactured over wafer-scale areas on a variety of substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Template-stripping nanofabrication technique used to produce two-dimensional arrays of large nanoparticles with variable heights over wafer-scale areas.
Figure 2: Out-of-plane lattice plasmon resonances can be tuned by controlling the height of nanoparticles.
Figure 3: Strongly coupled two-dimensional nanoparticle arrays exhibit a continuously tunable Fano-like profile.
Figure 4: Local hot spots on strongly coupled nanoparticles are orders of magnitude higher than those on isolated nanoparticles with the same size and shape.
Figure 5: Far-field and near-field optical properties of strongly coupled two-dimensional nanoparticle arrays are correlated.

Similar content being viewed by others

References

  1. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  3. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1168 (2009).

    Article  CAS  Google Scholar 

  4. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  5. Lim, D. K., Jeon, K. S., Kim, H. M., Nam, J. M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 60–67 (2010).

    Article  CAS  Google Scholar 

  6. Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  7. Mühlschlegel, P., Eisler, H-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  8. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    Article  CAS  Google Scholar 

  9. Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A. & Tikhodeev, S. G. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8, 2171–2175 (2008).

    Article  CAS  Google Scholar 

  10. Hao, F. et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

    Article  CAS  Google Scholar 

  11. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  12. Hentschel, M. et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010).

    Article  CAS  Google Scholar 

  13. Bohren, C. & Huffman, D. Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

    Book  Google Scholar 

  14. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  15. Voisin, C., Del Fatti, N., Christofilos, D. & Vallee, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B. 105, 2264–2280 (2001).

    Article  CAS  Google Scholar 

  16. Sonnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  CAS  Google Scholar 

  17. Meier, M., Wokaun, A. & Liao, P. F. Enhanced fields on rough surfaces — dipolar interactions among particles of sizes exceeding the Rayleigh limit. J. Opt. Soc. Am. B 2, 931–949 (1985).

    Article  CAS  Google Scholar 

  18. Lamprecht, B. et al. Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 84, 4721–4724 (2000).

    Article  CAS  Google Scholar 

  19. Zou, S. L., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

    Article  CAS  Google Scholar 

  20. Hicks, E. M. et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5, 1065–1070 (2005).

    Article  CAS  Google Scholar 

  21. Hohenau, A. et al. Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory. Phys. Rev. B 73, 155404 (2006).

    Article  Google Scholar 

  22. Auguie, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article  Google Scholar 

  23. Chu, Y. Z., Schonbrun, E., Yang, T. & Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).

    Article  Google Scholar 

  24. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

    Article  CAS  Google Scholar 

  25. Vecchi, G., Giannini, V. & Rivas, J. G. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80, 201401 (2009).

    Article  Google Scholar 

  26. Vecchi, G., Giannini, V. & Rivas, J. G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009).

    Article  CAS  Google Scholar 

  27. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  28. Hessel, A. & Oliner, A. A. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965).

    Article  Google Scholar 

  29. Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nature Nanotech. 2, 549–554 (2007).

    Article  CAS  Google Scholar 

  30. Johnson, P. B. & Christy, R. W. Optical-constants of noble-metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Gao and J-C. Yang for help with sample characterization and G. C. Schatz and S. Zou for discussions. This work was supported by the National Science Foundation (NSF) under CMMI-0826219 and the NSF-MRSEC program at the Materials Research Center at Northwestern University (DMR-0520513). This work made use of the NUANCE Center facilities, which are supported by NSF-MRSEC, NSF-NSEC and the Keck Foundation. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

T.W.O. and W.Z. conceived and designed the experiments. W.Z. performed the experiments, fabricated samples and performed numerical simulations. W.Z. and T.W.O. analysed the data and co-wrote the paper. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Teri W. Odom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Odom, T. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech 6, 423–427 (2011). https://doi.org/10.1038/nnano.2011.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing