Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bi- and trilayer graphene solutions

Abstract

Bilayer and trilayer graphene with controlled stacking is emerging as one of the most promising candidates for post-silicon nanoelectronics. However, it is not yet possible to produce large quantities of bilayer or trilayer graphene with controlled stacking, as is required for many applications. Here, we demonstrate a solution-phase technique for the production of large-area, bilayer or trilayer graphene from graphite, with controlled stacking. The ionic compounds iodine chloride (ICl) or iodine bromide (IBr) intercalate the graphite starting material at every second or third layer, creating second- or third-stage controlled graphite intercolation compounds, respectively. The resulting solution dispersions are specifically enriched with bilayer or trilayer graphene, respectively. Because the process requires only mild sonication, it produces graphene flakes with areas as large as 50 µm2. Moreover, the electronic properties of the flakes are superior to those achieved with other solution-based methods; for example, unannealed samples have resistivities as low as 1 kΩ and hole mobilities as high as 400 cm2 V–1 s–1. The solution-based process is expected to allow high-throughput production, functionalization, and the transfer of samples to arbitrary substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene dispersions from ionic graphite intercalation compounds (GIC).
Figure 2: On-chip separation method based on graphene size, using the ‘coffee-ring effect’.
Figure 3: Characterization of graphene flakes.
Figure 4: Evidence for layer- and size-controlled graphene dispersions from different GICs.
Figure 5: Electronic characteristics of bilayer and 3–4-layer graphene devices in the presence of a perpendicular electric field at room temperature.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  CAS  Google Scholar 

  3. Zhang, Y. B. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  4. Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech. 4, 383–388 (2009).

    Article  CAS  Google Scholar 

  5. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 916–916 (2007).

    Article  CAS  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  7. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  8. Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  CAS  Google Scholar 

  9. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  10. Lee, S., Lee, K. & Zhong, Z. H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702–4707 (2010).

    Article  CAS  Google Scholar 

  11. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  12. dos Santos, J. M. B. L., Peres, N. M. R. & Castro, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    Article  Google Scholar 

  13. Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680–3695 (2009).

    Article  CAS  Google Scholar 

  14. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  15. Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    Article  CAS  Google Scholar 

  16. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  17. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  18. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nature Nanotech. 4, 25–29 (2009).

    Article  CAS  Google Scholar 

  19. Wang, S. et al. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010).

    Article  CAS  Google Scholar 

  20. Gomez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    Article  CAS  Google Scholar 

  21. Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem. 2, 581–587 (2010).

    Article  CAS  Google Scholar 

  22. Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  Google Scholar 

  23. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

  24. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  25. Shih, C. J., Lin, S., Strano, M. S. & Blankschtein, D. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J. Am. Chem. Soc. 132, 14638–14648 (2010).

    Article  CAS  Google Scholar 

  26. Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    Article  CAS  Google Scholar 

  27. Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

    Article  CAS  Google Scholar 

  28. Green, A. A. & Hersam, M. C. Emerging methods for producing monodisperse graphene dispersions. J. Phys. Chem. Lett. 1, 544–549 (2010).

    Article  CAS  Google Scholar 

  29. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  30. Chung, D. D. L. Graphite. J. Mater. Sci. 37, 1475–1489 (2002).

    Article  CAS  Google Scholar 

  31. Li, X. L. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008).

    Article  CAS  Google Scholar 

  32. Ang, P. K., Wang, S. A., Bao, Q. L., Thong, J. T. L. & Loh, K. P. High-throughput synthesis of graphene by intercalation — exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3, 3587–3594 (2009).

    Article  CAS  Google Scholar 

  33. Lee, J. H. et al. One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21, 4383–4387 (2009).

    Article  CAS  Google Scholar 

  34. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  35. Behabtu, N. et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotech. 5, 406–411 (2010).

    Article  CAS  Google Scholar 

  36. Zheng, J. A. et al. High quality graphene with large flakes exfoliated by oleyl amine. Chem. Commun. 46, 5728–5730 (2010).

    Article  CAS  Google Scholar 

  37. Lee, J. H. et al. The superior dispersion of easily soluble graphite. Small 6, 58–62 (2010).

    Article  CAS  Google Scholar 

  38. Loh, K. P., Bao, Q. L., Ang, P. K. & Yang, J. X. The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010).

    Article  CAS  Google Scholar 

  39. Sasa, T., Takahash, Y. & Mukaibo, T. Crystal structure of graphite bromine lamellar compounds. Carbon 9, 407–416 (1971).

    Article  CAS  Google Scholar 

  40. Daumas, N. & Herold, A. Relations between phase concept and reaction mechanics in graphite insertion compounds. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 268, 373–382 (1969).

    CAS  Google Scholar 

  41. Nikitin, Y. A. & Pyatkovskii, M. L. Formation and properties of materials based on thermally expanded graphite. Powder Metall. Met. Ceram. 36, 41–45 (1997).

    Article  CAS  Google Scholar 

  42. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  43. Sharma, R., Lee, C. Y., Choi, J. H., Chen, K. & Strano, M. S. Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets. Nano Lett. 7, 2693–2700 (2007).

    Article  CAS  Google Scholar 

  44. Sharma, R. & Strano, M. S. Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter. Adv. Mater. 21, 60–65 (2009).

    Article  CAS  Google Scholar 

  45. Shen, X. Y., Ho, C. M. & Wong, T. S. Minimal size of coffee ring structure. J. Phys. Chem. B 114, 5269–5274 (2010).

    Article  CAS  Google Scholar 

  46. Sangani, A. S., Lu, C. H., Su, K. H. & Schwarz, J. A. Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning. Phys. Rev. E 80, 011603 (2009).

    Article  Google Scholar 

  47. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  48. De Marco, P. et al. Rapid identification of graphene flakes: alumina does it better. Nanotechology 21, 255703 (2010).

    Article  CAS  Google Scholar 

  49. Ghosh, D., Gangwar, R. & Chung, D. D. L. Superlattice ordering in graphite-IC1 single-crystals and fibers. Carbon 22, 325–333 (1984).

    Article  CAS  Google Scholar 

  50. Dotson, N. A. Polymerization Process Modeling, xvi, 371 p. (VCH, 1996).

    Google Scholar 

  51. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  52. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Mobility variations in mono- and multi-layer graphene films. Appl. Phys. Exp. 2, 025003 (2009).

    Article  Google Scholar 

  53. Su, C. Y. et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009).

    Article  CAS  Google Scholar 

  54. Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2009).

    Article  Google Scholar 

  55. Wang, F. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  Google Scholar 

  56. Bruna, M., Vaira, A., Battiato, A., Vittone, E. & Borini, S. Graphene strain tuning by control of the substrate surface chemistry. Appl. Phys. Lett. 97, 021911 (2010).

    Article  Google Scholar 

  57. Gunlycke, D., Li, J., Mintmire, J. W. & White, C. T. Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Appl. Phys. Lett. 91, 112108 (2007).

    Article  Google Scholar 

  58. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fundings from the 2009 US Office of Naval Research Multi University Research Initiative (MURI) on Graphene Advanced Terahertz Engineering (GATE) at MIT, Harvard and Boston University. M.S.S. is also grateful for a 2008 Young Investigator Program Award (YIP) from the US Office of Naval Research. D.B. and S.L. are grateful for financial support from the DuPont/MIT Alliance. C.J.S. is grateful for partial financial support from the David H. Koch Fellowship. The authors acknowledge support from the Institute for Soldier Nanotechnologies at MIT, funded by a grant from the Army Research Office. XRD and TEM analyses were performed at the MIT Center of Materials Science and Engineering (CMSE), supported by S. Speakman and Y. Zhang. Fruitful discussions with D.D.L Chung, J. Kong, A. Hsu and J.H. Kim are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.J.S, A.V., R.K. and M.S.S. conceived and designed the dispersion experiments. C.J.S. and R.K. implemented the dispersion method. C.J.S., A.V., R.S., G.P. and M.H.H. fabricated FET devices. C.J.S. and M.S.S. developed the mathematical model. A.V., R.S., Z.J. and J.H.H. performed the TEM and AFM analysis. C.J.S. performed the XRD and Raman analysis. Q.H.W., S.L. and N.F.R. did additional experiments for revising the manuscript. C.J.S., D.B. and M.S.S. wrote the manuscript with input from A.V. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CJ., Vijayaraghavan, A., Krishnan, R. et al. Bi- and trilayer graphene solutions. Nature Nanotech 6, 439–445 (2011). https://doi.org/10.1038/nnano.2011.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing