Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of superconductivity in KTaO3 by electrostatic carrier doping

Abstract

Superconductivity at interfaces has been investigated since the first demonstration of electric-field-tunable superconductivity in ultrathin films in 19601. So far, research on interface superconductivity has focused on materials that are known to be superconductors in bulk1,2,3,4,5,6,7,8,9. Here, we show that electrostatic carrier doping can induce superconductivity in KTaO3, a material in which superconductivity has not been observed before10,11. Taking advantage of the large capacitance of the self-organized electric double layer that forms at the interface between an ionic liquid and KTaO3 (ref. 12), we achieve a charge carrier density that is an order of magnitude larger than the density that can be achieved with conventional chemical doping. Superconductivity emerges in KTaO3 at 50 mK for two-dimensional carrier densities in the range 2.3 × 1014 to 3.7 × 1014 cm−2. The present result clearly shows that electrostatic carrier doping can lead to new states of matter at nanoscale interfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electric double-layer (EDL) transistor.
Figure 2: Characterization of EDL transistors.
Figure 3: Transport properties.
Figure 4: Superconducting properties.
Figure 5: Transport properties and critical parameters of superconductivity.

References

  1. Glover, R. E. & Sherrill, M. D. Changes in superconducting critical temperature produced by electrostatic charging. Phys. Rev. Lett. 5, 248–250 (1960).

    Article  CAS  Google Scholar 

  2. Mannhart, J., Bednorz, J. G., Müller, K. A. & Schlom, D. G. Electric field effect on superconducting. YBa2Cu3O7–δ films. Z. Phys. B 83, 307–311 (1991).

    Article  CAS  Google Scholar 

  3. Ahn, C. H. et al. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7– x films. Science 284, 1152–1155 (1999).

    Article  CAS  Google Scholar 

  4. Parendo, K. A., et al. Electrostatic tuning of the superconductor–insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005).

    Article  Google Scholar 

  5. Takahashi, K. S. et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195–198 (2006).

    Article  CAS  Google Scholar 

  6. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2008).

    Article  Google Scholar 

  7. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  8. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  CAS  Google Scholar 

  9. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010).

    Article  CAS  Google Scholar 

  10. Wemple, S. H. Some transport properties of oxygen-deficient single-crystal potassium tantalite (KTaO3). Phys. Rev. 137, A1575–A1582 (1965).

    Article  Google Scholar 

  11. Thompson, J. R., Boatner, L. A. & Thomson, J. O. Very low-temperature search for superconductivity in semiconducting KTaO3 . J. Low Temp. Phys. 47, 467–475 (1982).

    Article  CAS  Google Scholar 

  12. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Func. Mater. 19, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  13. Bednorz, J. G. & Müller. K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  14. Bhattacharya, A., Eblen-Zayas, M., Staley, N. E., Huber, W. H. & Goldman, A. M. Micromachined SrTiO3 single crystals as dielectrics for electrostatic doping on thin films. Appl. Phys. Lett. 85, 997–999 (1994).

    Article  Google Scholar 

  15. Parendo, K. A. et al. Electrostatic tuning of the superconductor–insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005).

    Article  Google Scholar 

  16. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  17. Panzer, M. J., Newman, C. R. & Frisbie, D. C. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86, 103503 (2005).

    Article  Google Scholar 

  18. Shimotani, H., Asanuma, H., Takeya, J. & Iwasa, Y. Electrolyte-gated charge accumulation in organic single crystals. Appl. Phys. Lett. 89, 203501 (2006).

    Article  Google Scholar 

  19. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids, Appl. Phys. Lett. 90, 052905 (2007).

    Article  Google Scholar 

  20. Mattheiss, L. F. Energy bands for KNiF3, SrTiO3, KMoO3, and KTaO3 . Phys. Rev. B 6, 4718–4740 (1972).

    Article  CAS  Google Scholar 

  21. Ueno, K. et al. Field-effect transistor based on KTaO3 perovskite. Appl. Phys. Lett. 84, 3726–3728 (2004).

    Article  CAS  Google Scholar 

  22. Nakamura, H. & Kimura, T. Electric field tuning of spin–orbit coupling in KTaO3 field-effect transistors. Phys. Rev. B 80, 121308 (2009).

    Article  Google Scholar 

  23. Sakai, A., Kanno, T., Yotsuhashi, S., Adachi, H. & Tokura, Y. Thermoelectric properties of electron-doped KTaO3 . Jpn J. Appl. Phys. 48, 097002 (2009).

    Article  Google Scholar 

  24. Uwe, H., Kinoshita, J., Yoshihiro, K., Yamanouchi, C. & Sakudo, T. Evidence for light and heavy conduction electrons at the zone center in KTaO3 . Phys. Rev. B 19, 3041–3044 (1979).

    Article  CAS  Google Scholar 

  25. Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).

    Article  Google Scholar 

  26. Sato, T., Masuda, G. & Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 49, 3603–3611 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (21686002, 21224009 and 21654046) and an Innovative Area grant on ‘Topological Quantum Phenomena’ from the Ministry of Education, Culture, Sport, Science and Technology of Japan. This work was also partly supported by Asahi Glass Foundation and the Nippon Sheet Glass Foundation for Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

K.U. performed planning, sample fabrication, measurements and analysis. S.N., N.K., T.N. and H.A. assisted with cryogenic transport measurements. H.S. and H.T.Y. assisted with planning. Y.I. and M.K. performed planning and analysis.

Corresponding author

Correspondence to M. Kawasaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, K., Nakamura, S., Shimotani, H. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nature Nanotech 6, 408–412 (2011). https://doi.org/10.1038/nnano.2011.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing