Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices

Abstract

The performance of photovoltaic devices could be improved by using rationally designed nanocomposites with high electron mobility to efficiently collect photo-generated electrons. Single-walled carbon nanotubes exhibit very high electron mobility, but the incorporation of such nanotubes into nanocomposites to create efficient photovoltaic devices is challenging. Here, we report the synthesis of single-walled carbon nanotube–TiO2 nanocrystal core–shell nanocomposites using a genetically engineered M13 virus as a template. By using the nanocomposites as photoanodes in dye-sensitized solar cells, we demonstrate that even small fractions of nanotubes improve the power conversion efficiency by increasing the electron collection efficiency. We also show that both the electronic type and degree of bundling of the nanotubes in the nanotube/TiO2 complex are critical factors in determining device performance. With our approach, we achieve a power conversion efficiency in the dye-sensitized solar cells of 10.6%.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of virus-enabled SWNT/TiO2 DSSCs.
Figure 2: Characterization of the virus/SWNT complex and biomineralization of TiO2 on the virus/SWNT complex.
Figure 3: Device performance and characterization.
Figure 4: Effect of bundling of SWNTs in virus/SWNT complexes on device performance.
Figure 5: Device performance of the best DSSC in this study.

Similar content being viewed by others

References

  1. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  CAS  Google Scholar 

  2. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  3. Kamat, P. V. Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    Article  CAS  Google Scholar 

  4. Kongkanand, A. et al. Quantum dot solar cells. tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008).

    Article  CAS  Google Scholar 

  5. Mora-Seró, I. et al. Recombination in quantum dot sensitized solar sells. Acc. Chem. Res. 42, 1848–1857 (2009).

    Article  Google Scholar 

  6. Nazeeruddin, M. K. et al. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  CAS  Google Scholar 

  7. Chen, C-Y. et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009).

    Article  CAS  Google Scholar 

  8. Cherepy, N. J., Smestad, G. P., Grätzel, M. & Zhang, J. Z. Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B 101, 9342–9351 (1997).

    Article  CAS  Google Scholar 

  9. Nazeeruddin, M. K. et al. Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005).

    Article  CAS  Google Scholar 

  10. Robel, I., Kuno, M. & Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 4136–4137 (2007).

    Article  CAS  Google Scholar 

  11. Sagawa, T., Yoshikawa, S. & Imahori, H. One-dimensional nanostructured semiconducting materials for organic photovoltaics. J. Phys. Chem. Lett. 1, 1020–1025 (2010).

    Article  CAS  Google Scholar 

  12. Varghese, O. K., Paulose, M. & Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotech. 4, 592–597 (2009).

    Article  CAS  Google Scholar 

  13. Law, M. et al. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  14. Kongkanand, A., Martínez Domínguez, R. & Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. capture and transport of photogenerated electrons. Nano Lett. 7, 676–680 (2007).

    Article  CAS  Google Scholar 

  15. Brown, P., Takechi, K. & Kamat, P. V. Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J. Phys. Chem. C 112, 4776–4782 (2008).

    Article  CAS  Google Scholar 

  16. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  17. Bonaccorso, F. Debundling and selective enrichment of SWNTs for applications in dye-sensitized solar cells. Int. J. Photoenergy 2010, 727134 (2010).

    Article  Google Scholar 

  18. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  19. Jang, S-R., Vittal, R. & Kim, K-J. Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20, 9807–9810 (2004).

    Article  CAS  Google Scholar 

  20. Geng, J. et al. Effect of SWNT defects on the electron transfer properties in P3HT/SWNT hybrid materials. Adv. Funct. Mater. 18, 2659–2665 (2008).

    Article  CAS  Google Scholar 

  21. Whaley, S. R. et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  22. Lee, S-W., Mao, C., Flynn, C. E. & Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  23. Sarikaya, M. et al. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  24. Lee, S-K., Yun, D. S. & Belcher, A. M. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co–Pt hybrid material. Biomacromolecules 7, 14–17 (2005).

    Article  Google Scholar 

  25. Wang, S. et al. Peptides with selective affinity for carbon nanotubes. Nature Mater. 2, 196–200 (2003).

    Article  Google Scholar 

  26. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–92 (2005).

    Article  CAS  Google Scholar 

  27. Hiemenz, P. C. & Rajagopalan, R. Principles of Colloid and Surface Chemistry (Marcel Dekker, 1997).

    Book  Google Scholar 

  28. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).

    Article  CAS  Google Scholar 

  29. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  30. Eder, D. & Windle, A. H. Carbon–inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv. Mater. 20, 1787–1793 (2008).

    Article  CAS  Google Scholar 

  31. Halme, J., Vahermaa, P., Miettunen, K. & Lund, P. Device physics of dye solar cells. Adv. Mater. 22, E210–E234 (2010).

    Article  CAS  Google Scholar 

  32. Lee, K-M., Hu, C-W., Chen, H-W. & Ho, K-C. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol. Energy Mater. Sol. Cells 92, 1628–1633 (2008).

    Article  CAS  Google Scholar 

  33. Tang, Y-B. et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482–3488 (2010).

    Article  CAS  Google Scholar 

  34. Yang, N. et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010).

    Article  CAS  Google Scholar 

  35. Ng, Y. H. et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 1, 2222–2227 (2010).

    Article  CAS  Google Scholar 

  36. Tan, P. H. et al. Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    Article  CAS  Google Scholar 

  37. Han, J-H. et al. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Mater. 9, 833–839 (2010).

    Article  CAS  Google Scholar 

  38. Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514 (1999).

    Article  CAS  Google Scholar 

  39. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  40. Hamann, T. W. et al. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1, 66–78 (2008).

    Article  CAS  Google Scholar 

  41. Mora-Seró, I. & Bisquert, J. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Eni, S.p.A (Italy) through the MIT Energy Initiative Program. H.Y. is grateful for a Korean Government Overseas Scholarship. R.L. is grateful for a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

X.D., H.Y., P.T.H. and A.M.B. conceived the idea and designed the experiments. X.D., H.Y., M.H.H., J.Q., D.S.Y., R.L. and M.S.S. performed the experiments and analysed the data. X.D., H.Y., P.T.H. and A.M.B. co-wrote the paper and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Paula T. Hammond or Angela M. Belcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, X., Yi, H., Ham, MH. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotech 6, 377–384 (2011). https://doi.org/10.1038/nnano.2011.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing