Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene

Abstract

The theory of damping is discussed in Newton's Principia1 and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes2,3,4,5,6,7,8,9,10,11 and graphene sheets12,13,14,15. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Devices and measurement setup.
Figure 2: Nonlinear damping in nanotube resonators.
Figure 3: Nonlinear damping in a graphene resonator.
Figure 4: Quality factor and force sensitivity at low driving force.

Similar content being viewed by others

References

  1. Newton, I., Principia, Book II (1687).

    Google Scholar 

  2. Sazonova, V. et al. Tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  3. Garcia-Sanchez, D. et al. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99, 085501 (2007).

    Article  CAS  Google Scholar 

  4. Lassagne, B., Garcia-Sanchez, D., Aguasca, A. & Bachtold, A. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 8, 3735–3738 (2008).

    Article  CAS  Google Scholar 

  5. Chiu, H-Y., Hung, P., Postma, H. W. Ch. & Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Letters 8, 4342–4346 (2008).

    Article  CAS  Google Scholar 

  6. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    Article  CAS  Google Scholar 

  7. Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  Google Scholar 

  8. Lassagne, B, Tarakanov, Y., Kinaret, J., Garcia-Sanchez, D. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  CAS  Google Scholar 

  9. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  CAS  Google Scholar 

  10. Gouttenoire, V. et al. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010).

    Article  CAS  Google Scholar 

  11. Wang, Z. et al. Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327, 552–555 (2010).

    Article  CAS  Google Scholar 

  12. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  13. Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    Article  CAS  Google Scholar 

  14. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotech. 4, 861–867 (2009).

    Article  CAS  Google Scholar 

  15. Singh, V. et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 21, 165204 (2010).

    Article  Google Scholar 

  16. Katz, I., Retzker, A., Straub, R. & Lifshitz, R. Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 040404 (2007).

    Article  Google Scholar 

  17. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  18. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits of inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  CAS  Google Scholar 

  19. Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article  CAS  Google Scholar 

  20. Lifshitz, R. & Cross, M. C. Reviews of Nonlinear Dynamics and Complexity Vol. 1 (Wiley-VCH, 2008), available at www.tau.ac.il/~ronlif/pubs/RNDC1-1-2008-preprint.pdf

    Google Scholar 

  21. Howe, R. T. & Muller, R. S. Resonant-microbridge vapor sensor. IEEE Trans. Electron Devices ED-33, 499–506 (1986).

    Article  CAS  Google Scholar 

  22. Kozinsky, I., Postma, H. W. C., Bargatin, I. & Roukes, M. L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006).

    Article  Google Scholar 

  23. Aldridge, J. S. & Cleland, A. N. Noise-enabled precision measurements of a Duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005).

    Article  CAS  Google Scholar 

  24. Unterreithmeier, Q. P., Faust, T. & Kotthaus, J. P. Nonlinear switching dynamics in a nanomechanical resonator. Phys. Rev. B 81, 241405R (2010)

    Article  Google Scholar 

  25. Zaitsev, S., Shtempluck, O., Buks, E. & Gottlieb, O. Nonlinear damping in a micromechanical oscillator. Preprint at http://arXiv.org/abs/0911.0833v2 (2009).

  26. Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunnelling. Phys. Rev. B 77, 245418 (2008).

    Article  Google Scholar 

  27. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358 (2001).

    Article  CAS  Google Scholar 

  28. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    Article  CAS  Google Scholar 

  29. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  30. Moser, J. & Bachtold, A. Fabrication of large addition energy quantum dots in graphene. Appl. Phys. Lett. 95, 173506 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union (RODIN, FP7), the Spanish ministry (FIS2009-11284), the Catalan government (AGAUR, SGR), the Swiss National Science Foundation (PBBSP2-130945) and a Marie Curie grant (271938). I.W.-R. acknowledges financial support from the Nanosystems Initiative Munich. The authors also thank B. Thibeault (Santa Barbara) for help in fabrication and P. Gambardella, S. Roche and S. Valenzuela for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.E., J.M. and M.Z. fabricated the devices. J.M. and A.E. developed the measurement setup and performed the measurements. J.C. and A.B. provided measurement support. A.E., J.M., A.B. and I.W.-R. analysed the data. I.W.-R. established equations (2) and (3). A.B. conceived and designed the experiment. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to A. Bachtold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1091 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, A., Moser, J., Chaste, J. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech 6, 339–342 (2011). https://doi.org/10.1038/nnano.2011.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing