Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes

Abstract

Rapid charge and discharge rates have become an important feature of electrical energy storage devices, but cause dramatic reductions in the energy that can be stored or delivered by most rechargeable batteries (their energy capacity)1,2,3,4,5,6,7. Supercapacitors do not suffer from this problem, but are restricted to much lower stored energy per mass (energy density) than batteries8. A storage technology that combines the rate performance of supercapacitors with the energy density of batteries would significantly advance portable and distributed power technology2. Here, we demonstrate very large battery charge and discharge rates with minimal capacity loss by using cathodes made from a self-assembled three-dimensional bicontinuous nanoarchitecture consisting of an electrolytically active material sandwiched between rapid ion and electron transport pathways. Rates of up to 400C and 1,000C for lithium-ion and nickel-metal hydride chemistries, respectively, are achieved (where a 1C rate represents a one-hour complete charge or discharge), enabling fabrication of a lithium-ion battery that can be 90% charged in 2 minutes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bicontinuous battery electrode.
Figure 2: Bicontinuous electrode microstructure.
Figure 3: Ultrafast discharge and charge of the NiOOH electrode.
Figure 4: Ultrafast discharge of the lithiated MnO2 cathode.
Figure 5: Lithium-ion battery ultrafast charge behaviour.

Similar content being viewed by others

References

  1. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  CAS  Google Scholar 

  2. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  CAS  Google Scholar 

  3. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002).

    Article  CAS  Google Scholar 

  4. Yao, M. et al. Nickel substrate having three-dimensional micronetwork structure for high-power nickel/metal-hydride battery. Electrochem. Solid State Lett. 10, A56–A59 (2007).

    Article  CAS  Google Scholar 

  5. Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  CAS  Google Scholar 

  6. Kang, K. S., Meng, Y. S., Breger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  Google Scholar 

  7. Rolison, D. R. et al. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226–252 (2009).

    Article  CAS  Google Scholar 

  8. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  9. Wang, Y. G., Wang, Y. R., Hosono, E. J., Wang, K. X. & Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 47, 7461–7465 (2008).

    Article  CAS  Google Scholar 

  10. Doherty, C. M., Caruso, R. A., Smarsly, B. M., Adelhelm, P. & Drummond, C. J. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 21, 5300–5306 (2009).

    Article  CAS  Google Scholar 

  11. Cui, L. F., Yang, Y., Hsu, C. M. & Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    Article  CAS  Google Scholar 

  12. Long, J. W., Dunn, B., Rolison, D. R. & White, H. S. Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004).

    Article  CAS  Google Scholar 

  13. Whitehead, A. H. & Schreiber, M. Current collectors for positive electrodes of lithium-based batteries. J. Electrochem. Soc. 152, A2105–A2113 (2005).

    Article  Google Scholar 

  14. Yao, M., Okuno, K., Iwaki, T., Awazu, T. & Sakai, T. Long cycle-life LiFePO4/Cu–Sn lithium ion battery using foam-type three-dimensional current collector. J. Power Sources 195, 2077–2081 (2010).

    Article  CAS  Google Scholar 

  15. Ripenbein, T., Golodnitsky, D., Nathan, M. & Peled, E. Electroless nickel current collector for 3D-microbatteries. J. Appl. Electrochem. 40, 435–444 (2010).

    Article  CAS  Google Scholar 

  16. Plichta, E. et al. A rechargeable Li/LixCoO2 Cell. J. Power Sources 21, 25–31 (1987).

    Article  CAS  Google Scholar 

  17. Shembel, E. M. et al. Problems of corrosion and other electrochemical side processes in lithium chemical power sources with non-aqueous electrolytes. J. Power Sources 54, 421–424 (1995).

    Article  CAS  Google Scholar 

  18. Yao, M. et al. LiFePO4-based electrode using micro-porous current collector for high power lithium ion battery. J. Power Sources 173, 545–549 (2007).

    Article  CAS  Google Scholar 

  19. Kim, J. H., Myung, S. T. & Sun, Y. K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim. Acta 49, 219–227 (2004).

    Article  CAS  Google Scholar 

  20. Guo, J. C. & Wang, C. S. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem. Commun. 46, 1428–1430 (2010).

    Article  CAS  Google Scholar 

  21. Reddy, A. L. M., Shaijumon, M. M., Gowda, S. R. & Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002–1006 (2009).

    Article  CAS  Google Scholar 

  22. Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 5, 531–537 (2010).

    Article  CAS  Google Scholar 

  23. Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M. & Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).

    Article  CAS  Google Scholar 

  24. Ergang, N. S. et al. Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. Adv. Mater. 18, 1750–1753 (2006).

    Article  CAS  Google Scholar 

  25. Ergang, N. S., Fierke, M. A., Wang, Z., Smyrl, W. H. & Stein, A. Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J. Electrochem. Soc. 154, A1135–A1139 (2007).

    Article  CAS  Google Scholar 

  26. Wang, Z., Fierke, M. A. & Stein, A. Porous carbon/tin (IV) oxide monoliths as anodes for lithium-ion batteries. J. Electrochem. Soc. 155, A658–A663 (2008).

    Article  CAS  Google Scholar 

  27. Ergang, N. S., Lytle, J. C., Yan, H. W. & Stein, A. Effect of a macropore structure on cycling rates of LiCoO2 . J. Electrochem. Soc. 152, A1989–A1995 (2005).

    Article  CAS  Google Scholar 

  28. Sakamoto, J. S. & Dunn, B. Hierarchical battery electrodes based on inverted opal structures. J. Mater. Chem. 12, 2859–2861 (2002).

    Article  CAS  Google Scholar 

  29. Stephenson, D. E., Hartman, E. M., Harb, J. N. & Wheeler, D. R. Modeling of particle–particle interactions in porous cathodes for lithium-ion batteries. J. Electrochem. Soc. 154, A1146–A1155 (2007).

    Article  CAS  Google Scholar 

  30. Yu, X. D., Lee, Y. J., Furstenberg, R., White, J. O. & Braun, P. V. Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007).

    Article  Google Scholar 

  31. Wu, M. S., Huang, Y. A. & Yang, C. H. Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition. J. Electrochem. Soc. 155, A798–A805 (2008).

    Article  CAS  Google Scholar 

  32. Tench, D. & Warren, L. F. Electrodeposition of conducting transition-metal oxide hydroxide films from aqueous-solution. J. Electrochem. Soc. 130, 869–872 (1983).

    Article  CAS  Google Scholar 

  33. Motupally, S., Streinz, C. C. & Weidner, J. W. Proton diffusion in nickel hydroxide—prediction of active material utilization. J. Electrochem. Soc. 145, 29–34 (1998).

    Article  CAS  Google Scholar 

  34. Mao, Z., Devidts, P., White, R. E. & Newman, J. Theoretical analysis of the discharge performance of a NiOOH/H2 cell. J. Electrochem. Soc. 141, 54–63 (1994).

    Article  CAS  Google Scholar 

  35. Corrigan, D. A. & Knight, S. L. Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel-hydroxide redox reaction. J. Electrochem. Soc. 136, 613–619 (1989).

    Article  CAS  Google Scholar 

  36. Reimers, J. N., Fuller, E. W., Rossen, E. & Dahn, J. R. Synthesis and electrochemical studies of LiMnO2 prepared of low-temperatures. J. Electrochem. Soc. 140, 3396–3401 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Division of Materials Sciences (DE-FG02-07ER46471) through the Materials Research Laboratory at the University of Illinois at Urbana-Champaign (energy storage studies), and the US Army Research Laboratory and US Army Research Office (DAAD19-03-1-0227) (three-dimensional electrode fabrication).

Author information

Authors and Affiliations

Authors

Contributions

H.Z., X.Y. and P.V.B. designed the experiments. H.Z and X.Y. performed and analysed the experiments. H.Z., X.Y. and P.V.B. wrote the manuscript. P.V.B. supervised the project.

Corresponding author

Correspondence to Paul V. Braun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1493 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yu, X. & Braun, P. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotech 6, 277–281 (2011). https://doi.org/10.1038/nnano.2011.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing