Building plasmonic nanostructures with DNA

Journal name:
Nature Nanotechnology
Volume:
6,
Pages:
268–276
Year published:
DOI:
doi:10.1038/nnano.2011.49
Published online

Abstract

Plasmonic structures can be constructed from precise numbers of well-defined metal nanoparticles that are held together with molecular linkers, templates or spacers. Such structures could be used to concentrate, guide and switch light on the nanoscale in sensors and various other devices. DNA was first used to rationally design plasmonic structures in 1996, and more sophisticated motifs have since emerged as effective and versatile species for guiding the assembly of plasmonic nanoparticles into structures with useful properties. Here we review the design principles for plasmonic nanostructures, and discuss how DNA has been applied to build finite-number assemblies (plasmonic molecules), regularly spaced nanoparticle chains (plasmonic polymers) and extended two- and three-dimensional ordered arrays (plasmonic crystals).

At a glance

Figures

  1. A 'periodic table' of plasmonic atoms.
    Figure 1: A 'periodic table' of plasmonic atoms.

    Plasmonic nanoparticles can be categorized based on geometrical parameters. Rows one to five contain spherical shapes12, rod-like shapes13, 14, 15, 16, 17, 18, 19, 2D polygons20, 21, 22, 23, 24, 25, 3D polyhedrons26, 27, 28, 29, 30 and branched shapes31, 32, 33. From left to right in each row, particles become geometrically higher-ordered in terms of aspect ratios, number of sides and facets, or number of branches. The last particle in each row has a hollow structure. Row six contains nanoparticles of various complexities32, 34, 35, 36, 37, 38. Row seven contains various other hollow polygonal and polyhedral nanoparticles7, 30, 39, 40, 41, 42, 43. Some images have been cropped, rotated, recoloured and/or had their backgrounds filled in; see the original papers for scale bars and other information. Figure reproduced with permission from: 2–9, 13–16, 19, 23–27, 29, 31, 35–37, 39, 40, refs 12, 13, 14, 15, 16, 17, 18, 19, 23, 23, 24, 25, 28, 30, 31, 31, 31, 31, 33, 35, 38, 34, 39, 30, 41 respectively, © 2006, 2007, 2008, 2009, 2006, 2008, 2008, 2006, 2005, 2005, 2005, 2004, 2008, 2002, 2003, 2003, 2003, 2003, 2009, 2010, 2008, 2004, 2008, 2002, 2006 respectively ACS; 10, 43, refs 20, 43 respectively © 2001, 2002 respectively AAAS; 11, 22, 34, refs 21, 29, 37 respectively, © 2005, 2010, 2007 respectively RSC; 12, 17, 21, 28, 30, 33, 34, 42, refs 22, 26, 26, 32, 36, 32, 32, 42 respectively © 2010, 2004, 2004, 2008, 2007, 2008, 2008, 2009 respectively Wiley; 18, 20, 41, refs 27, 27, 7 © 2007, 2007, 2009 NPG; 38, ref. 40, © 2007 Elsevier.

  2. Schematic of plasmonic nanostructures assembled from libraries of plasmonic atoms with various DNA motifs.
    Figure 2: Schematic of plasmonic nanostructures assembled from libraries of plasmonic atoms with various DNA motifs.

    A vast library of plasmonic atoms can be synthesized using wet-chemistry approaches; various DNA motifs can be created using DNA nanotechnology; the plasmonic atoms and DNA can then be used to rationally design and synthesize a range of plasmonic nanostructures.

  3. Plasmonic nanostructures rationally organized from metallic 'nanoparticle atoms'.
    Figure 3: Plasmonic nanostructures rationally organized from metallic 'nanoparticle atoms'.

    These spatially directed assemblies include homomeric molecules (panels 1–681, 98, 102, 106, 110, 123; 13–1749, 97), heteromeric molecules (panels 7–1283, 98, 101, 102, 103, 104; 1895), linear 'polymer' chains (panels 19–2448, 111, 115, 116), 2D crystalline patterns (panels 25–2946, 87, 94, 117) and 3D nanoparticle crystals (panels 3082 and 3186). Some images have been cropped, rotated, recoloured and/or had their backgrounds filled in; see the original papers for scale bars and other information. Figure reproduced with permission from: 1, 8, 13–15, 17, 24, 31, refs 98, 98, 49, 49, 49, 49, 111, 86 respectively, © 1999, 1999, 2010, 2010, 2010, 2010, 2005, 2010 respectively Wiley; 2, 7, 11, 16, 23, 28–30, refs 81, 101, 83, 97, 116, 117, 87, 82 respectively, © 1996, 2010, 2009, 2010, 2010, 2008, 2009, 2010 respectively NPG; 3–6, 9, 10, 12, 18, 19, 25–27, refs 106, 102, 110, 123, 102, 104, 103, 95, 115, 46, 94, 94 respectively, © 2007, 2009, 2009, 2009, 2009, 2006, 1998, 2010, 2004, 2004, 2006, 2006 respectively ACS; 20–22, ref. 48, © 2009 AAAS.

References

  1. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193204 (2010).
  2. Shipway, A. N., Katz, E. & Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 1852 (2000).
  3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189193 (2006).
  4. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442453 (2008).
  5. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229232 (2003).
  6. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Rev. 41, 18421851 (2008).
  7. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935939 (2009).
  8. Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377445 (1908).
  9. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419422 (2003).
  10. Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 249, 18701901 (2005).
  11. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60103 (2009).
  12. Schwartzberg, A. M., Olson, T. Y., Talley, C. E. & Zhang, J. Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B 110, 1993519944 (2006).
  13. Xiong, Y. et al. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 129, 36653675 (2007).
  14. Ni, W., Yang, Z., Chen, H., Li, L. & Wang, J. Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130, 66926693 (2008).
  15. Wijaya, A., Schaffer, S. B., Pallares, I. G. & Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3, 8086 (2008).
  16. Wiley, B. J. et al. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6, 22732278 (2006).
  17. Zhao, N. et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24, 991998 (2008).
  18. Huo, Z., Tsung, C-k., Huang, W., Zhang, X. & Yang, P. Sub-two nanometer single crystal au nanowires. Nano Lett. 8, 20412044 (2008).
  19. Murphy, C. J., Gole, A. M., Hunyadi, S. E. & Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 75447554 (2006).
  20. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 19011903 (2001).
  21. Porel, S., Singh, S. & Radhakrishnan, T. P. Polygonal gold nanoplates in a polymer matrix. Chem. Commun. 23872389 (2005).
  22. Das, S. K., Das, A. R. & Guha, A. K. Microbial synthesis of multishaped gold nanostructures. Small 6, 10121021 (2010).
  23. Liu, B., Xie, J., Lee, J. Y., Ting, Y. P. & Chen, J. P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 109, 1525615263 (2005).
  24. Ah, C. S. et al. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 17, 55585561 (2005).
  25. Jiang, L-P. et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 43, 58775883 (2004).
  26. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 36733677 (2004).
  27. Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech. 2, 435440 (2007).
  28. Seo, D. et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C 112, 24692475 (2008).
  29. Kim, D. Y., Im, S. H., Park, O. O. & Lim, Y. T. Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids. CrystEngComm 12, 116121 (2010).
  30. Sun, Y., Mayers, B. T. & Xia, Y. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481485 (2002).
  31. Chen, S., Wang, Z. L., Ballato, J., Foulger, S. H. & Carroll, D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 1618616187 (2003).
  32. Liao, H-G., Jiang, Y-X., Zhou, Z-Y., Chen, S-P. & Sun, S-G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed. 47, 91009103 (2008).
  33. Mulvihill, M. J., Ling, X. Y., Henzie, J. & Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 132, 268274 (2009).
  34. Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119124 (2004).
  35. Wang, C. et al. Rational synthesis of heterostructured nanoparticles with morphology control. J. Am. Chem. Soc. 132, 65246529 (2010).
  36. Lee, J., Hasan, W., Lee, M. H. & Odom, T. W. Optical properties and magnetic manipulation of bimaterial nanopyramids. Adv. Mater. 19, 43874391 (2007).
  37. Cheng, W. L., Steinhart, M., Gösele, U. & Wehrspohn, R. Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 34933495 (2007).
  38. Qin, Y. et al. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem. Mater. 20, 39653972 (2008).
  39. Skrabalak, S. E. et al. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Rev. 41, 15871595 (2008).
  40. Zou, X., Ying, E. & Dong, S. Preparation of novel silver-gold bimetallic nanostructures by seeding with silver nanoplates and application in surface-enhanced Raman scattering. J. Colloid Interface Sci. 306, 307315 (2007).
  41. Yin, Y., Erdonmez, C., Aloni, S. & Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 1267112673 (2006).
  42. Wang, X. et al. One-pot solution synthesis of cubic cobalt nanoskeletons. Adv. Mater. 21, 16361640 (2009).
  43. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 21762179 (2002).
  44. Seeman, N. C. DNA in a material world. Nature 421, 427431 (2003).
  45. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297302 (2006).
  46. Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 23432347 (2004).
  47. Zhang, J., Liu, Y., Ke, Y. & Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248251 (2006).
  48. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112116 (2009).
  49. Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. Int. Ed. 49, 27002704 (2010).
  50. Storhoff, J. J. & Mirkin, C. A. Programmed materials synthesis with DNA. Chem. Rev. 99, 18491862 (1999).
  51. Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 60426108 (2004).
  52. Niemeyer, C. M. & Simon, U. DNA-based assembly of metal nanoparticles. Eur. J. Inorg. Chem. 36413655 (2005).
  53. Ofir, Y., Samanta, B. & Rotello, V. M. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 37, 18141823 (2008).
  54. Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: Preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369389 (2010).
  55. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788800 (1996).
  56. Kelly, L. K., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668677 (2003).
  57. Liz-Marzán, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 3241 (2006).
  58. Bohren, C. F. & Huffmann, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  59. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).
  60. Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 42124217 (1999).
  61. Wang, H., Brandl, D. W., Nordlander, P. & Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 40, 5362 (2007).
  62. Gans, R. The shape of ultra microscopic gold nanoparticles. Ann. Phys. 37, 881900 (1912).
  63. Wiley, B. J. et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110, 1566615675 (2006).
  64. Su, K-H., Wei, Q-H. & Zhang, X. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 10871090 (2003).
  65. Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 20802088 (2007).
  66. Prodan, E. & Nordlander, P. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 54445454 (2004).
  67. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899903 (2004).
  68. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 11351138 (2010).
  69. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 13311333 (1998).
  70. Wei, Q-H., Su, K-H., Durant, S. & Zhang, X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett. 4, 10671071 (2004).
  71. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641648 (2007).
  72. Lin, S., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 25532559 (2005).
  73. Tabor, C., Van Haute, D. & El-Sayed, M. A. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano 3, 36703678 (2009).
  74. Sheikholeslami, S., Jun, Y-W., Jain, P. K. & Alivisatos, A. P. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett. 10, 26552660 (2010).
  75. Funston, A. M., Novo, C., Davis, T. J. & Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 16511658 (2009).
  76. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527538 (2008).
  77. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 5559 (2006).
  78. Badia, A. et al. Self-assembled monolayers on gold nanoparticles. Chem.-Eur. J. 2, 359363 (1996).
  79. Templeton, A. C., Wuelfing, M. P. & Murray, R. W. Monolayer protected cluster molecules. Acc. Chem. Rev. 33, 2736 (2000).
  80. Cheng, W. L., Dong, S. J. & Wang, E. K. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles. Langmuir 19, 94349439 (2003).
  81. Alivisatos, A. P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609611 (1996).
  82. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotech. 5, 116120 (2010).
  83. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388391 (2009).
  84. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549552 (2008).
  85. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553556 (2008).
  86. Cheng, W. et al. Probing in real time the soft crystallization of DNA-capped nanoparticles. Angew. Chem. Int. Ed. 49, 380384 (2010).
  87. Cheng, W. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519525 (2009).
  88. Verwey, E. J. W. & Overbeek, J. Theory of the Stability of Lyophobic Colloids Vol. 1 (Elsevier, 1948).
  89. Derjaguin, B. V. & Landau, L. Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim. URS 14, 633652 (1941).
  90. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 7, 16411647 (2006).
  91. LaBean, T. H. & Li, H. Constructing novel materials with DNA. Nano Today 2, 2635 (2007).
  92. Li, H., Park, S. H., Reif, J. H., LaBean, T. H. & Yan, H. DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 126, 418419 (2003).
  93. Sharma, J., Chhabra, R., Liu, Y., Ke, Y. & Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 45, 730735 (2006).
  94. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 15021504 (2006).
  95. Ding, B. et al. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132, 32483249 (2010).
  96. Kershner, R. J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotech. 4, 557561 (2009).
  97. Hung, A. M. et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech. 5, 121126 (2010).
  98. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 18081812 (1999).
  99. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D. & Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 3235 (2001).
  100. Claridge, S. A., Liang, H. W., Basu, S. R., Fréchet, J. M. J. & Alivisatos, A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 8, 12021206 (2008).
  101. Lim, D-K., Jeon, K-S., Kim, H. M., Nam, J-M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 6067 (2010).
  102. Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 84558459 (2009).
  103. Mucic, R. C., Storhoff, J. J., Mirkin, C. A. & Letsinger, R. L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 1267412675 (1998).
  104. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 92869287 (2006).
  105. Pal, S., Sharma, J., Yan, H. & Liu, Y. Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver–gold nanoclusters. Chem. Commun. 60596061 (2009).
  106. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: Control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 41304131 (2007).
  107. Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 45, 22042209 (2006).
  108. Gu, H., Chao, J., Xiao, S-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202205 (2010).
  109. Weizmann, Y., Braunschweig, A. B., Wilner, O. I., Cheglakov, Z. & Willner, I. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc. Natl Acad. Sci. USA 105, 52895294 (2008).
  110. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: Collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 21532159 (2009).
  111. Deng, Z., Tian, Y., Lee, S-H., Ribbe, A. E. & Mao, C. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 35823585 (2005).
  112. Beyer, S., Nickels, P. & Simmel, F. C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 5, 719722 (2005).
  113. Stearns, Linda A. et al. Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. Angew. Chem. Int. Ed. 48, 84948496 (2009).
  114. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272277 (2003).
  115. Wang, G. & Murray, R. W. Controlled assembly of monolayer-protected gold clusters by dissolved DNA. Nano Lett. 4, 95101 (2003).
  116. Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chem. 2, 319328 (2010).
  117. Cheng, W. L., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech. 3, 682690 (2008).
  118. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741745 (2005).
  119. Seelig, J. et al. Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level. Nano Lett. 7, 685689 (2007).
  120. Maye, M. M., Gang, O. & Cotlet, M. Photoluminescence enhancement in CdSe/ZnS-DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem. Commun. 46, 61116113 (2010).
  121. Xiong, H., Sfeir, M. Y. & Gang, O. Three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 10, 44564462 (2010).
  122. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotech. 5, 6166 (2010).
  123. Kim, J-Y. & Lee, J-S. Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett. 9, 45644569 (2009).

Download references

Author information

Affiliations

  1. Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA,

    • Shawn J. Tan,
    • Michael J. Campolongo &
    • Dan Luo
  2. Department of Chemical Engineering, Monash University, Clayton, Victoria 3150, Australia.

    • Wenlong Cheng

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data