Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transforming C60 molecules into graphene quantum dots

Abstract

The fragmentation of fullerenes using ions, surface collisions or thermal effects is a complex process that typically leads to the formation of small carbon clusters of variable size. Here, we show that geometrically well-defined graphene quantum dots can be synthesized on a ruthenium surface using C60 molecules as a precursor. Scanning tunnelling microscopy imaging, supported by density functional theory calculations, suggests that the structures are formed through the ruthenium-catalysed cage-opening of C60. In this process, the strong C60–Ru interaction induces the formation of surface vacancies in the Ru single crystal and a subsequent embedding of C60 molecules in the surface. The fragmentation of the embedded molecules at elevated temperatures then produces carbon clusters that undergo diffusion and aggregation to form graphene quantum dots. The equilibrium shape of the graphene can be tailored by optimizing the annealing temperature and the density of the carbon clusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM images of GQDs formed by decomposition of 0.08 ML C60 on Ru(0001).
Figure 2: STM images of the C60-derived clusters after annealing a 0.03 ML film of C60 on Ru(0001).
Figure 3: Three-dimensional STM images of a carbon cluster derived from the decomposition of embedded C60 molecules on Ru(0001), and the simulated ‘on-top_vac’ configuration of a C60 molecule on Ru(0001).
Figure 4: Comparison of the growth mechanism of graphene nanoislands and quantum dots using C2H4 and C60.
Figure 5: Series of STM images monitoring the transformation of trapezium-shaped GQDs to triangular-shaped GQDs at 1,000 K.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  3. Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech. 4, 30–33 (2009).

    Article  CAS  Google Scholar 

  4. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  5. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  6. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  7. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–875 (2009).

    Article  CAS  Google Scholar 

  8. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Google Scholar 

  9. Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  10. Pan, D. Y., Zhang, J. C., Li, Z. & Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010).

    Article  Google Scholar 

  11. Li, L. S. & Yan, X. Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010).

    Article  CAS  Google Scholar 

  12. Otero, G. et al. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454, 865–819 (2008).

    Article  CAS  Google Scholar 

  13. Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. Direct transformation of graphene to fullerene. Nature Chem. 2, 450–453 (2010).

    Article  CAS  Google Scholar 

  14. Krishna, V., Stevens, N., Koopman, B. & Moudgil, B. Optical heating and rapid transformation of functionalized fullerenes. Nature Nanotech. 5, 330–334 (2010).

    Article  CAS  Google Scholar 

  15. Cepek, C., Goldoni, A. & Modesti, S. Chemisorption and fragmentation of C60 on Pt(111) and Ni(110). Phys. Rev. B 53, 7466–7472 (1996).

    Article  CAS  Google Scholar 

  16. Swami, N., He, H. & Koel, B. E. Polymerization and decomposition of C60 on Pt(111) surfaces. Phys. Rev. B 59, 8283–8291 (1999).

    Article  CAS  Google Scholar 

  17. Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).

    Article  Google Scholar 

  18. Wang, B., Bocquet, M. L., Marchini, S., Gunther, S. & Wintterlin, J. Chemical origin of a graphene moire overlayer on Ru(0001). Phys. Chem. Chem. Phys. 10, 3530–3534 (2008).

    Article  CAS  Google Scholar 

  19. Sutter, E., Acharya, D. P., Sadowski, J. T. & Sutter, P. Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001). Appl. Phys. Lett. 94, 133101 (2009).

    Article  Google Scholar 

  20. Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009).

    Article  Google Scholar 

  21. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009).

    Article  CAS  Google Scholar 

  22. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  23. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  24. Xu, K., Cao, P. G. & Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 9, 4446–4451 (2009).

    Article  CAS  Google Scholar 

  25. Zhang, Y. B. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Phys. 4, 627–630 (2008).

    Article  CAS  Google Scholar 

  26. Larsson, J. A. et al. Orientation of individual C60 molecules adsorbed on Cu(111): Low-temperature scanning tunneling microscopy and density functional calculations. Phys. Rev. B 77, 115434 (2008).

    Article  Google Scholar 

  27. Casarin, M. et al. Strong bonding of single C60 molecules to (1×2)-Pt(110): an STM/DFT investigation. J. Phys. Chem. C 111, 9365–9373 (2007).

    Article  CAS  Google Scholar 

  28. Lacovig, P. et al. Growth of dome-shaped carbon nanoislands on Ir(111): the intermediate between carbidic clusters and quasi-free-standing graphene. Phys. Rev. Lett. 103, 166101 (2009).

    Article  Google Scholar 

  29. Felici, R. et al. X-ray-diffraction characterization of Pt(111) surface nanopatterning induced by C60 adsorption. Nature Mater. 4, 688–692 (2005).

    Article  CAS  Google Scholar 

  30. Li, H. I. et al. Surface geometry of C60 on Ag(111). Phys. Rev. Lett. 103, 056101 (2009).

    Article  CAS  Google Scholar 

  31. Schulze, G. et al. Resonant electron heating and molecular phonon cooling in single C60 junctions. Phys. Rev. Lett. 100, 136801 (2008).

    Article  CAS  Google Scholar 

  32. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).

    Article  Google Scholar 

  33. Chen, H., Zhu, W. G. & Zhang, Z. Y. Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys. Rev. Lett. 104, 186101 (2010).

    Article  Google Scholar 

  34. Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  CAS  Google Scholar 

  35. Mo, Y. W., Swartzentruber, B. S., Kariotis, R., Webb, M. B. & Lagally, M. G. Growth and equilibrium structures in the epitaxy of Si on Si(001). Phys. Rev. Lett. 63, 2393–2396 (1989).

    Article  CAS  Google Scholar 

  36. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  37. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

  38. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  39. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.P.L acknowledges funding support from an NRF-CRP grant ‘Graphene related materials and devices’ (R-143-000-360-281) as well as MOE Tier 2 grant ‘Structure and dynamics of molecular self-assembled films’ (R-143-000-344-112).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and K.P.L. conceived and designed the experiments. J.L. performed the STM and STS measurement. P.S.E.Y. carried out theoretical calculations. C.K.G and W.P contributed analysis tools. K.P.L supervised the project. All authors discussed the results and analysed the data.

Corresponding author

Correspondence to Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1205 kb)

Supplementary information

Supplementary movie 1 (WMV 740 kb)

Supplementary information

Supplementary movie 2 (WMV 795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Yeo, P., Gan, C. et al. Transforming C60 molecules into graphene quantum dots. Nature Nanotech 6, 247–252 (2011). https://doi.org/10.1038/nnano.2011.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing