Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

Abstract

The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis1, mechano-transduction2, focal adhesion3, motility4,5, metastasis6 and drug delivery7,8,9,10. Techniques based on quasi-static atomic force microscopy techniques11,12,13,14,15,16,17 can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy18,19,20,21,22,23,24,25,26,27,28 method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is 10–1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Harmonic content of the AFM microcantilever as it interacts with soft living cells.
Figure 2: Multi-harmonic images of E. coli bacteria.
Figure 3: Multi-harmonic images of rat fibroblasts.
Figure 4: Multi-harmonic images of a human red blood cell.
Figure 5: Tracking time-varying changes in the mechanical properties of rat fibroblasts.

Similar content being viewed by others

References

  1. Nelson, C. M. et al. Emergent patterns of growth controlled by multi-cellular form and mechanics. Proc. Natl Acad. Sci USA 102, 11597 (2005).

    Google Scholar 

  2. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    Article  CAS  Google Scholar 

  3. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  Google Scholar 

  4. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  5. DuRoure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  CAS  Google Scholar 

  6. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007).

    Article  Google Scholar 

  7. Palm, K., Luthman, K., Ungell, A. L., Strandlund, G. & Artursson, P. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. 85, 32–39 (1996).

    Article  CAS  Google Scholar 

  8. Breukink, E. et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286, 2361–2364 (1999).

    Article  CAS  Google Scholar 

  9. Fantner, G. E., Barbero, R. J., Gray, D. S. & Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotech. 5, 280–285 (2010).

    Article  CAS  Google Scholar 

  10. Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

    Article  CAS  Google Scholar 

  11. Van Vliet, K. J., Bao, G. & Suresh, S. The biomechanics toolbox: experimental approaches to living cells and biomolecules. Acta Mater. 51, 5881–5905 (2003).

    Article  CAS  Google Scholar 

  12. Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    Article  CAS  Google Scholar 

  13. Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nature Nanotech. 4, 389–393 (2009).

    Article  CAS  Google Scholar 

  14. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P. & Hansma, P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

    Article  CAS  Google Scholar 

  15. Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biol. 3, 607–610 (2001).

    Article  CAS  Google Scholar 

  16. Arnoldi, M. et al. Bacterial turgor pressure can be measured by atomic force microscopy. Phys. Rev. E 62, 1034–1044 (2000).

    Article  CAS  Google Scholar 

  17. Hassan, E. A. et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998).

    Article  Google Scholar 

  18. Melcher, J. et al. Origins of phase contrast in the atomic force microscope in liquids. Proc. Natl Acad. Sci. USA 106, 13655–13660 (2009).

    Article  CAS  Google Scholar 

  19. Van Noort, S. J. T., Willemsen, O. H., van der Werf, K. O., de Grooth, B. G. & Greve, J. Mapping electrostatic forces using higher harmonics tapping mode atomic force microscopy in liquid. Langmuir 15, 7101 (1999).

    Article  CAS  Google Scholar 

  20. Preiner, J., Tang, J. L., Patsushenko, V. & Hinterdorfer, P. Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. Phys. Rev. Lett. 99, 046102 (2007).

    Article  Google Scholar 

  21. Dulebo, A. et al. Second harmonic atomic force microscopy imaging of live and fixed mammalian cells. Ultramicroscopy 109, 1056 (2009).

    Article  CAS  Google Scholar 

  22. Turner, R. D., Kirkham, J., Devine, D. & Thomson, N. H. Second harmonic atomic force microscopy of living Staphylococcus aureus bacteria. Appl. Phys. Lett. 94, 043901 (2009).

    Article  Google Scholar 

  23. Xu, X., Melcher, J., Reifenberger, R. & Raman, A. Compositional contrast of soft biological materials in liquids using the momentary excitation of higher eigenmodes. Phys. Rev. Lett. 102, 060801 (2009).

    Article  Google Scholar 

  24. Martínez, N. F. et al. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19, 384011 (2008).

    Article  Google Scholar 

  25. Platz, D., Tholen, E. A., Pesen, D. & Haviland, D. B. Intermodulation atomic force microscopy. Appl. Phys. Lett. 92, 153106 (2008).

    Article  Google Scholar 

  26. Tetard, L., Passian, A. & Thundat, T. New modes for sub-surface atomic force microscopy through nanomechanical coupling. Nature Nanotech. 5, 105–109 (2010).

    Article  CAS  Google Scholar 

  27. Tetard, L. et al. Imaging nanoparticles in cells by nanomechanical holography. Nature Nanotech. 3, 501–505 (2008).

    Article  CAS  Google Scholar 

  28. Dong, M. D., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nature Nanotech. 4, 514–517 (2009).

    Article  CAS  Google Scholar 

  29. Vadillo-Rodriguez, V. & Dutcher, J. R. Dynamic viscoelastic behavior of individual gram negative bacterial cells. Soft Matter 5, 5012–5019 (2009).

    Article  CAS  Google Scholar 

  30. San Paulo, A. & García, R. Tip sample forces, amplitude and energy dissipation, in amplitude modulation (tapping mode) force microscopy. Phys. Rev. B 64, 193411 (2001).

    Article  Google Scholar 

  31. Plodinec, M. et al. The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system. J. Struct. Biol. 174, 476–484 (2011).

    Article  CAS  Google Scholar 

  32. Alsteen, D. et al. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19, 384005 (2008).

    Article  Google Scholar 

  33. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2, 515–521 (2005).

    Article  CAS  Google Scholar 

  34. Heinz, W. F. & Hoh, J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 7799, 143–150 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

A.R. acknowledges financial support from the National Science Foundation (grant no. CMMI 0927648; programme manager, E. Misawa) and the Keeley visiting fellowship (awarded by Wadham Collage, University of Oxford) to support his stay at the University of Oxford. S.C. and A.R. also acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC, grant no. EPSRC-EP/H043659/1). S.C. also acknowledges support from the Research Councils UK and Oxford Martin School.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and S.T. are lead authors and contributed equally to this work. A.R. discovered the important experimental channels for material contrast. S.T., A.C., A.S, A.R., E.N. and M.S. developed experimental protocols for sample preparation. A.R., S.T. and S.C. conceived and designed the experiments. A.R. developed the theory and A.C. performed the numerical simulations and developed the code to implement the theory on the acquired AFM images. A.R., A.C., A.S. and S.T. performed the experiments. A.R. and S.T. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. Raman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, A., Trigueros, S., Cartagena, A. et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nature Nanotech 6, 809–814 (2011). https://doi.org/10.1038/nnano.2011.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.186

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research