Electron microscopy of specimens in liquid

Journal name:
Nature Nanotechnology
Volume:
6,
Pages:
695–704
Year published:
DOI:
doi:10.1038/nnano.2011.161
Published online

Abstract

Imaging samples in liquids with electron microscopy can provide unique insights into biological systems, such as cells containing labelled proteins, and into processes of importance in materials science, such as nanoparticle synthesis and electrochemical deposition. Here we review recent progress in the use of electron microscopy in liquids and its applications. We examine the experimental challenges involved and the resolution that can be achieved with different forms of the technique. We conclude by assessing the potential role that electron microscopy of liquid samples can play in areas such as energy storage and bioimaging.

At a glance

Figures

  1. Configurations for electron microscopy in liquid.
    Figure 1: Configurations for electron microscopy in liquid.

    a, TEM imaging with an open environmental chamber containing liquid and vapour. Differential apertures separate the microscope vacuum from the higher pressure at the sample. b, SEM imaging with an environmental chamber. The electron beam scans in x and y directions over the sample. c, TEM imaging of nanoparticles in a liquid fully enclosed between electron transparent windows. d, STEM imaging in a fully enclosed liquid, used to image nanoparticle labels on whole biological cells. e, SEM of a liquid sample under an electron transparent window. f, Combination of SEM and light microscopy of a liquid sample above an electron transparent window.

  2. Examples of electron microscopy systems for liquids.
    Figure 2: Examples of electron microscopy systems for liquids.

    a, Fabrication of a liquid cell from Si microchips (upper and lower wafers) with SiN windows, glass reservoirs, lids and three electrodes for electrochemical TEM experiments3. b, Photograph of an assembled liquid cell. c, A single Si microchip with an electron transparent SiN window25. The dimensions of the microchip are 2.0 × 2.3 × 0.3 mm. d, A microfluidic chamber formed from two of the microchips in c, showing the liquid flow direction. e, A capsule with an electron transparent window for imaging liquid samples in SEM43. The outer diameter is 16 mm. f, Cell culture dish with a microchip with a SiN window33, for combined light microscopy and SEM. g, The back (vacuum) side of the microchip for the culture dish. Panels reproduced with permission from: a,b, ref. 3, © 2003 NPG; c, ref. 25, © 2010 CUP; e, ref. 43, © 2004 Informa Healthcare; f,g, ref. 33, © 2010 Elsevier. Panel d modified with permission from ref. 4, © 2009 National Academy of Sciences.

  3. Electron microscopy of biological samples.
    Figure 3: Electron microscopy of biological samples.

    a, Human monocyte-derived macrophages imaged with SEM in a wet environment39 at 4.9 torr and 7 °C. Samples were fixed in glutaraldehyde and rinsed with deionized water before imaging. b, SEM image of H. pylori bacterium fully immersed in liquid, imaged using a capsule with a thin window. Samples were incubated with complexed biotinylated gastrin on streptavidin-coated 20 nm Au particles, followed by glutaraldehyde fixation. c, STEM image of Au-labelled epidermal growth factor receptors on whole fixed COS7 fibroblast cells in liquid. The Au labels are visible as yellow spots on the light blue cellular material. The background shows in dark blue. d, Endocytotic vesicles were formed in a second sample after a longer incubation. e, Fluorescence microscopy image of COS7 cells33. The cells were fixed, labelled with a fluorescent dye, and stained for contrast in SEM. f, SEM image of the cellular material in the rectangle in e imaged under fully hydrated conditions33. Panels reproduced with permission from: a, ref. 39, © 2009 Wiley; e,f, ref. 33, © 2010 Elsevier. Panels modified with permission from: b, ref. 2, © 2004 National Academy of Sciences; c,d, ref. 4, © 2009 National Academy of Sciences.

  4. Liquid cell electron microscopy in materials science.
    Figure 4: Liquid cell electron microscopy in materials science.

    a, Images and electrochemical data obtained during potentiostatic deposition of Cu on a polycrystalline Au electrode from 0.1M CuSO4/0.18M H2SO4. Cu has dark contrast whereas the Au (20 nm thick), SiN windows (80 nm thick) and electrolyte (1 μm thick) provide the grey background. The applied potential was −70 mV with respect to a Cu reference electrode, and the graph shows the total current versus time. The electrode area is 2 × 10−5 cm2. Red lines show the times of each image. b, Images acquired during Pt nanoparticle formation from a solution containing 10 mg mL−1 Pt(acetylacetonate)2 in a 9:1 mixture of o-dichlorobenzene and oleylamine. The images were recorded after 17.9, 18.7, and 22.3 s of beam exposure during which a coalescence event occurs. The graph shows the size of this (red circles) and another particle that appears to grow by addition of monomers (blue triangles). c, Energy filtered images at 16 s intervals during dendritic growth of Cu from the edge of an electrode6. Galvanostatic conditions were used with current density 40 mA cm−2 and average lateral growth rate 0.2 μm s−1. Panels modified with permission from: a, ref. 52, © 2006 ACS; b, ref. 6, © 2009 AAAS; c, ref. 104 © 2010 CUP.

  5. Resolution of different forms of electron microscopy in liquid.
    Figure 5: Resolution of different forms of electron microscopy in liquid.

    Theoretical maximal resolution versus water thickness for TEM, STEM and SEM. The resolution was calculated for typical TEM and STEM instrument parameters at 200 keV beam energy (see text), and for the imaging of Au nanoparticles at the bottom of a layer of water for TEM, and at the top of the layer for STEM. The resolution obtained in SEM just below the liquid-enclosing membrane does not depend on the liquid thickness (see text). Experimental data points are shown for Au nanoparticles in TEM31, STEM26 and SEM with a 30-nm-thick SiN window33, and for PbS nanoparticles in water imaged with STEM35. The error bars represent experimental errors.

References

  1. Ruska, E. Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken. Kolloid Z. 100, 212219 (1942).
    This paper describes the first in situ TEM — its principle of operation is still the basis of most modern in situ TEM systems.
  2. Thiberge, S. et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl Acad. Sci. USA 101, 33463351 (2004).
    This paper made it clear that cells and tissue fully embedded in liquid can be imaged with a SEM with a resolution of several tens of nanometres.
  3. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nature Mater. 2, 532536 (2003).
    This paper describes the first use of a silicon nitride liquid cell for measuring a growth process in the TEM, and the first combination of electrical biasing with liquid cell microscopy to control and quantify a growth process.
  4. de Jonge, N., Peckys, D. B., Kremers, G. J. & Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl Acad. Sci. USA 106, 21592164 (2009).
    This paper is the first demonstration of the imaging of labelled proteins in whole eukaryotic cells in liquid with a resolution of several nanometres, using STEM.
  5. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520 (2010).
  6. Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312 (2009).
    This paper is the first demonstration of the study of nanoparticle growth in liquid with nanometre resolution in TEM.
  7. Ruska, E. The development of the electron microscope and of electron microscopy. Nobel Lectures, Physics 1981–1990 (1986).
  8. Reimer, L. & Kohl, H. Transmission Electron Microscopy: Physics of Image Formation (Springer, 2008).
  9. Bozzola, J. J. & Russell, L. D. Electron Microscopy (Jones and Bartlett, 1992).
  10. von Ardenne, M. Ueber eun 200 kV-Universal-Elektronenmikroskop mit Objektabschattungsvorrichtung. Z. Phys. 117, 657688 (1941).
  11. Donnelly, S. E. et al. Ordering in a fluid inert gas confined by flat surfaces. Science 296, 507510 (2002).
  12. Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Turner, J. N. Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161270 (1974).
  13. Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429 (2004).
  14. Dai, L. L., Sharma, R. & Wu, C. Y. Self-assembled structure of nanoparticles at a liquid–liquid interface. Langmuir 21, 26412643 (2005).
  15. Danilatos, G. D. & Robinson, V. N. E. Principles of scanning electron microscopy at high specimen pressures. Scanning 18, 7578 (1979).
  16. Stokes, D. J. Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Phil. Trans. R. Soc. Lond. A 361, 27712787 (2003).
  17. Stokes, D. L. Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM) (Wiley, 2008).
  18. Abrams, I. M. & McBain, J. W. A closed cell for electron microscopy. J Appl. Phys. 15, 607609 (1944).
  19. Daulton, T. L., Little, B. J., Lowe, K. & Jones-Meehan, J. In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal. 7, 470485 (2001).
  20. Nishijima, K., Yamasaki, J., Orihara, H. & Tanaka, N. Development of microcapsules for electron microscopy and their application to dynamical observation of liquid crystals in transmission electron microscopy. Nanotechnology 15, S329S332 (2004).
  21. Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. & Berry, V. Impermeable graphenic encasement of bacteria. Nano Lett. 11, 12701275 (2011).
  22. Grogan, J. M. & Bau, H. H. The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19, 885894 (2010).
  23. Franks, R. et al. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol. 8, 44044407 (2008).
  24. Liu, K. L. et al. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921 (2008).
  25. Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622629 (2010).
  26. de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. & Drouin, D. Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119 (2010).
  27. Peckys, D. B., Veith, G. M., Joy, D. C. & de Jonge, N. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4, e8214 (2009).
  28. Creemer, J. F. et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998 (2008).
    This paper describes advances in high-pressure cells for the TEM that combine enhanced functionality with the ability to image at atomic resolution.
  29. Creemer, J. F. et al. A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst. 19, 254264 (2010).
  30. Kawasaki, T., Ueda, K., Ichihashi, M. & Tanji, T. Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Rev. Sci. Instr. 80, 113701113705 (2009).
  31. Klein, K. L., Anderson, I. M. & de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242, 117123 (2011).
  32. Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. & Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 24602465 (2009).
  33. Nishiyama, H. et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol. 169, 438449 (2010).
  34. Inami, W., Nakajima, K., Miyakawa, A. & Kawata, Y. Electron beam excitation assisted optical microscope with ultra-high resolution. Opt. Express 18, 1289712902 (2010).
  35. Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 28092813 (2011).
  36. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216225 (2003).
  37. Stahlberg, H. & Walz, T. Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol. 3, 268281 (2008).
  38. Pierson, J., Sani, M., Tomova, C., Godsave, S. & Peters, P. J. Toward visualization of nanomachines in their native cellular environment. Histochem. Cell. Biol. 132, 253262 (2009).
  39. Kirk, S. E., Skepper, J. N. & Donald, A. M. Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233, 205224 (2009).
  40. Collins, S. P. et al. Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc. Res. Techniq. 25, 398405 (1993).
  41. Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. & Gauthier, C. Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301 (2005).
  42. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F. & Willner, I. 'Plugging into enzymes': nanowiring of redox enzymes by a gold nanoparticle. Science 299, 18771881 (2003).
  43. Barshack, I. et al. A novel method for 'wet' SEM. Ultrastruct. Pathol. 28, 2931 (2004).
  44. Melo, R. C., Sabban, A. & Weller, P. F. Leukocyte lipid bodies: inflammation-related organelles are rapidly detected by wet scanning electron microscopy. J. Lipid. Res. 47, 25892594 (2006).
  45. Sugi, H. et al. Dynamic electron microscopy of ATP-induced myosin head movement in living muscle filaments. Proc. Natl Acad. Sci. USA 94, 43784392 (1997).
  46. Matricardi, V. R., Moretz, R. C. & Parsons, D. F. Electron diffraction of wet proteins: catalase. Science 177, 268270 (1972).
  47. Lippincott-Schwartz, J. & Manley, S. Putting super-resolution fluorescence microscopy to work. Nature Methods 6, 2123 (2009).
  48. Peckys, D. B. & de Jonge, N. Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 17331738 (2011).
  49. Peckys, D. B., Mazur, P., Gould, K. L. & de Jonge, N. Fully hydrated yeast cells imaged with electron microscopy. Biophys. J. 100, 25222529 (2011).
  50. Murai, T. et al. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J. Biol. Chem. 286, 19992007 (2011).
  51. Dukes, M. J., Peckys, D. B. & de Jonge, N. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 41104116 (2010).
  52. Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. & Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238242 (2006).
  53. Scharifker, B. R. & Hills, G. J. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28, 879889 (1983).
  54. Radisic, A., Ross, F. M. & Searson, P. C. In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 78627868 (2006).
  55. Radisic, A., Vereecken, P. M., Searson, P. C. & Ross, F. M. The morphology and nucleation kinetics of copper islands during electrodeposition. Surf. Sci. 600, 18171826 (2006).
  56. Wise, M. E., Biskos, G., Martin, S. T., Russell, L. M. & Buseck, P. R. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol. Sci. Tech. 39, 849856 (2005).
  57. Gai, P. L. Development of wet environmental TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 2128 (2002).
    The first observation by TEM of an industrially important liquid-phase catalytic reaction.
  58. Gai, P. L. & Harmer, M. A. Surface atomic defect structures and growth of Au nanorods. Nano Lett. 2, 771774 (2002).
  59. Gabrisch, H., Kjeldgaard, L., Johnson, E. & Dahmen, U. Equilibrium shape and interface roughening of small liquid Pb inclusions in solid Al. Acta Mater. 49, 42594269 (2001).
  60. Ross, F. M., Tersoff, J. & Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005).
  61. Eswaramoorthy, S. K., Howe, J. M. & Muralidharan, G. In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 14371440 (2007).
  62. Lee, J. G. & Mori, H. In situ observation of alloy phase formation in nanometre-sized particles in the Sn–Bi system. Philos. Mag. 84, 26752686 (2004).
  63. Howe, J. M. & Saka, H. In situ transmission electron microscopy studies of the solid–liquid interface. MRS Bull. 29, 951957 (2004).
  64. Kuwabata, S., Kongkanand, A., Oyamatsu, D. & Torimoto, T. Observation of ionic liquid by scanning electron microscope. Chem. Lett. 35, 600601 (2006).
  65. Roy, P., Lynch, R. & Schmuki, P. Electron beam induced in vacuo Ag deposition on TiO2 from ionic liquids. Electrochem. Comm. 11, 15671570 (2009).
  66. Joy, D. C. & Joy, C. S. Scanning electron microscope imaging in liquids — some data on electron interactions in water. J. Microsc. 221, 8499 (2005).
  67. Hyun, J. K., Ercius, P. & Muller, D. A. Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17 (2008).
  68. Loos, J. et al. Electron tomography on micrometer-thick specimens with nanometer resolution. Nano Lett. 9, 17041708 (2009).
  69. Demers, H., Poirier-Demers, N., Drouin, D. & de Jonge, N. Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal. 16, 795804 (2010).
  70. Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. & Leapman, R. D. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy 109, 213221 (2009).
  71. Spence, J. C. H. High-Resolution Electron Microscopy (Oxford Univ. Press, 2003).
  72. Hohmann-Marriott, M. F. et al. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nature Methods 6, 729731 (2009).
  73. Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. STEM tomography for thick biological specimens. Ultramicroscopy 109, 7080 (2008).
  74. Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 13381340 (1970).
  75. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574 (2010).
  76. Goldstein, J. I. in Introduction to Analytical Electron Microscopy (eds Hren, J. J., Goldstein, J. I. & Joy, D. C.) 83120 (Plenum Press, 1979).
  77. Thiberge, S., Zik, O. & Moses, E. An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum. 75, 22802289 (2004).
  78. Fenter, P., Lee, S. S., Zhang, Z. & Sturchio, N. C. In situ imaging of orthoclase-aqueous solution interfaces with X-ray reflection interface microscopy. J. Appl. Phys. (in the press).
  79. Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355390 (2005).
  80. Donev, E. U., Schardein, G., Wright, J. C. & Hastings, J. T. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor. Nanoscale 3, 27092717 (2011).
  81. Hui, S. W. & Parsons, D. F. Electron diffraction of wet biological membranes. Science 184, 7778 (1974).
  82. Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735746 (2004).
  83. Holmqvist, P., Dhont, J. K. G. & Lang, P. R. Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall. Phys. Rev. E 74, 021402 (2006).
  84. Pawley, J. B. Handbook of Biological Confocal Microscopy (Springer, 1995).
  85. Hell, S. W. Far-field optical nanoscopy. Science 316, 11531158 (2007).
    This paper reviews several light microscopy approaches to break the diffraction barrier.
  86. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 14681470 (1991).
  87. Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 12101213 (2005).
  88. Larabell, C. A. & Nugent, K. A. Imaging cellular architecture with X-rays. Curr. Opin. Struct. Biol. 20, 623631 (2010).
  89. Muller, D. J., Helenius, J., Alsteens, D. & Dufrene, Y. F. Force probing surfaces of living cells to molecular resolution. Nature Chem. Biol. 5, 383390 (2009).
  90. Allison, D. P., Mortensen, N. P., Sullivan, C. J. & Doktycz, M. J. Atomic force microscopy of biological samples. Nanomed. Nanobiotechnol. 2, 618634 (2010).
  91. Fleming, A. J., Kenton, B. J. & Leang, K. K. Bridging the gap between conventional and video-speed scanning probe microscopes. Ultramicroscopy 110, 12051214 (2010).
  92. Sulchek, T. et al. High-speed atomic force microscopy in liquid. Rev. Sci. Instrum. 71, 20972099 (2000).
  93. Langmore, J. P. & Smith, M. F. Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349373 (1992).
  94. Haider, M., Hartel, P., Muller, H., Uhlemann, S. & Zach, J. Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. R. Soc. A 367, 36653682 (2009).
  95. Flannigan, D. J., Barwick, B. & Zewail, A. H. Biological imaging with 4D ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 107, 99339937 (2010).
  96. Campbell, G. H., LaGrange, T., Kim, J. S., Reed, B. W. & Browning, N. D. Quantifying transient states in materials with the dynamic transmission electron microscope. J. Electron Microsc. 59 (suppl. 1), S67S74 (2010).
  97. Kruit, P. & Jansen, G. H. in Handbook of Charged Particle Optics (ed. Orloff, J.) 275318 (CRC Press, 1997).
  98. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444456 (2001).
  99. Agronskaia, A. V. et al. Integrated fluorescence and transmission electron microscopy. J. Struct. Biol. 164, 183189 (2008).
  100. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).
  101. Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233245 (2011).
  102. Tkachenko, A. G. et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem. 15, 482490 (2004).
  103. Tantra, R. & Knight, A. Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5, 381392 (2010).
  104. Ross, F. M. Electrochemical nucleation, growth and dendrite formation in liquid cell TEM. Microsc. Microanal. 16, S326S327 (2010).
  105. Wang, C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li-ion batteries: challenges and opportunities. J. Mater. Res. 25, 15411547 (2010).

Download references

Author information

Affiliations

  1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, Tennessee 37232, USA

    • Niels de Jonge
  2. IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA

    • Frances M. Ross

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Additional data