Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response

Abstract

Therapeutic cancer vaccination is an attractive strategy because it induces T cells of the immune system to recognize and kill tumour cells in cancer patients. However, it remains difficult to generate large numbers of T cells that can recognize the antigens on cancer cells using conventional vaccine carrier systems1,2. Here we show that α-Al2O3 nanoparticles can act as an antigen carrier to reduce the amount of antigen required to activate T cells in vitro and in vivo. We found that α-Al2O3 nanoparticles delivered antigens to autophagosomes in dendritic cells, which then presented the antigens to T cells through autophagy. Immunization of mice with α-Al2O3 nanoparticles that are conjugated to either a model tumour antigen or autophagosomes derived from tumour cells resulted in tumour regression. These results suggest that α-Al2O3 nanoparticles may be a promising adjuvant in the development of therapeutic cancer vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conjugation of OVA to α-Al2O3 nanoparticles resulted in efficient cross-presentation of the OVA antigen in vitro.
Figure 2: DCs pulsed with α-Al2O3–OVA efficiently cross-presented OVA antigen to naive OT-I T cells in vitro and in vivo.
Figure 3: Autophagy is required for α-Al2O3 nanoparticle-mediated cross-presentation of OVA to naive T cells.
Figure 4: α-Al2O3 nanoparticles increased the efficiency of cross-presentation and antitumour response of cancer vaccines.

Similar content being viewed by others

References

  1. Pardoll, D. M. Cancer vaccines. Nature Med. 4, 525–531 (1998).

    Article  CAS  Google Scholar 

  2. Finn, O. J. Cancer vaccines: between the idea and the reality. Nature Rev. Immunol. 3, 630–641 (2003).

    Article  CAS  Google Scholar 

  3. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  Google Scholar 

  4. Heijst, J. W. J. et al. Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325, 1265–1269 (2009).

    Article  Google Scholar 

  5. Burgdorf, S. & Kurts, C. Endocytosis mechanisms and the cell biology of antigen-presentation. Curr. Opin. Immunol. 20, 89–95 (2008).

    Article  CAS  Google Scholar 

  6. Vyas, J. M., Van der Veen, A. G. & Ploegh, H. L. The known unknowns of antigen processing and presentation. Nature Rev. Immunol. 8, 607–618 (2008).

    Article  CAS  Google Scholar 

  7. Cresswell, P., Ackerman, A. L., Giodini, A., Peaper, D. R. & Wearsch, P. A. Mechanisms MHC class I restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157 (2005).

    Article  CAS  Google Scholar 

  8. Guy, B. The perfect mix: recent progress in adjuvant research. Nature Rev. Micro. 5, 505–517 (2007).

    CAS  Google Scholar 

  9. Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nature Immunol. 12, 509–517 (2011).

    Article  CAS  Google Scholar 

  10. Marrack, P., McKee, A. S. & Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nature Rev. Immunol. 9, 287–293 (2009).

    Article  CAS  Google Scholar 

  11. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  CAS  Google Scholar 

  12. Hermanson, G. T. Bioconjugate Techniques 2nd edn, 1202 (Academic Press, 2008).

    Google Scholar 

  13. Matteoni, R. & Kreis, T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol. 105, 1253–1265 (1987).

    Article  CAS  Google Scholar 

  14. Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. & Germain, R. N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    Article  CAS  Google Scholar 

  15. Regnault, A. et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).

    Article  CAS  Google Scholar 

  16. Kratzer, R., Mauvais, F. X., Burgevin, A., Barilleau, E. & van Endert, P. Fusion proteins for versatile antigen targeting to cell surface receptors reveal differential capacity to prime immune responses. J. Immunol. 184, 6855–6864 (2010).

    Article  CAS  Google Scholar 

  17. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25, 1159–1164 (2007).

    Article  CAS  Google Scholar 

  18. Pelka, K. & Latz, E. Getting closer to the dirty little secret. Immunity 34, 455–458 (2011).

    Article  CAS  Google Scholar 

  19. Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Med. 17, 479–487 (2011).

    Article  CAS  Google Scholar 

  20. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntington-induced cell death. J. Cell. Biol. 171. 603–614 (2005).

    Article  Google Scholar 

  21. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell. 34, 259–269 (2009).

    Article  CAS  Google Scholar 

  22. Crotzer, V. L. & Blum, J. S. Autophagy and its role in MHC-mediated antigen presentation. J. Immunol. 182, 3335–3341 (2009).

    Article  CAS  Google Scholar 

  23. Li, Y. H. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    Article  CAS  Google Scholar 

  24. Uhl, M. et al. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell. Death Differ. 16, 991–1005 (2009).

    Article  CAS  Google Scholar 

  25. English, L. et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nature Immunol. 10, 480–487 (2009).

    Article  CAS  Google Scholar 

  26. Jagannath, C. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature Med. 15, 267–276 (2009).

    Article  CAS  Google Scholar 

  27. Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

    Article  CAS  Google Scholar 

  28. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  Google Scholar 

  29. de Gruijl, T. D., van den Eertwegh, A. J. M., Pinedo, H. M. & Scheper, R. J. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 57, 1569–1577 (2008).

    Article  Google Scholar 

  30. Jensen, S. M. et al. Signaling through OX40 enhances antitumor immunity. Semin. Oncol. 37, 524–532 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. J. Urba for critical reading of the manuscript and Y. Zhang, P. Pang and M. Eastman for help with the collection of experimental data. Thanks also go to N. Morris and A. D. Weinberg for providing the anti-OX40 antibody. This research is supported in part by the Safeway Foundation and Providence Portland Medical Foundation (H-M.H.), Oregon Nanoscience and Microtechnologies Institute (J.J. and H-M.H.), the National Science Foundation (J.J.) and the National Institutes of Health (R01CA107243 and R21CA141278 to H-M.H.).

Author information

Authors and Affiliations

Authors

Contributions

H.L. performed the experiments and wrote the manuscript. Y.L. performed some experiments. J.J. and H-M.H. directed this work and wrote the manuscript.

Corresponding authors

Correspondence to Jun Jiao or Hong-Ming Hu.

Ethics declarations

Competing interests

H.L., J.J. and H-M.H. have filed a patent application titled 'Alumina nanoparticle bioconjugates and methods of stimulating immune response using said bioconjugates'. Y.L. has no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1985 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, Y., Jiao, J. et al. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature Nanotech 6, 645–650 (2011). https://doi.org/10.1038/nnano.2011.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing