Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive detection of force and displacement using trapped ions

Abstract

The ability to detect extremely small forces and nanoscale displacements is vital for disciplines such as precision spin-resonance imaging1, microscopy2, and tests of fundamental physical phenomena3,4,5. Current force-detection sensitivity limits have surpassed 1 aN Hz−1/2 (refs 6,7) through coupling of nanomechanical resonators to a variety of physical readout systems1,7,8,9,10. Here, we demonstrate that crystals of trapped atomic ions11,12 behave as nanoscale mechanical oscillators and may form the core of exquisitely sensitive force and displacement detectors. We report the detection of forces with a sensitivity of 390 ± 150 yN Hz−1/2, which is more than three orders of magnitude better than existing reports using nanofabricated devices7, and discriminate ion displacements of 18 nm. Our technique is based on the excitation of tunable normal motional modes in an ion trap13 and detection through phase-coherent Doppler velocimetry14,15, and should ultimately allow force detection with a sensitivity better than 1 yN Hz−1/2 (ref. 16). Trapped-ion-based sensors could enable scientists to explore new regimes in materials science where augmented force, field and displacement sensitivity may be traded against reduced spatial resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase-coherent Doppler velocimetry.
Figure 2: Phase-coherent detection of the COM mode by RF excitation, where Fd(ion) = F0(ion).
Figure 3: Calibration of force-detection sensitivity by Fourier analysis.

Similar content being viewed by others

References

  1. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  2. Binnig, C., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  3. Mohideen, U. & Roy, A. Precision measurement of the casimir force from 0.1 to 0.9 µm. Appl. Phys. Lett. 81, 4549–4552 (1998).

    Article  CAS  Google Scholar 

  4. Volokitin, A. I. & Persson, B. N. J. Theory of friction: the contribution from a fluctuating electric field. J. Phys. Condens. Matter 11, 345–359 (1999).

    Article  CAS  Google Scholar 

  5. Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).

    Article  CAS  Google Scholar 

  6. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  7. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    Article  CAS  Google Scholar 

  8. Knobel, R. G. & Cleland, A. N. Nanometer-scale displacement sensing using a single-electron transistor. Nature 424, 291–293 (2003).

    Article  CAS  Google Scholar 

  9. Lahaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  CAS  Google Scholar 

  10. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  CAS  Google Scholar 

  11. Brewer, L. R. et al. Static properties of a non-neutral 9Be+ ion plasma. Phys. Rev. A 38, 859–873 (1988).

    Article  CAS  Google Scholar 

  12. Biercuk, M. J. et al. High-fidelity quantum control using ion crystals in a penning trap. Quantum Inf. Comput. 9, 920–949 (2009).

    CAS  Google Scholar 

  13. Heinzen, D. J. & Wineland, D. J. Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990).

    Article  CAS  Google Scholar 

  14. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article  CAS  Google Scholar 

  15. Mitchell, T. B., Bollinger, J. J., Huang, X.-P. & Itano, W. M. Doppler imaging of plasma modes in a penning trap. Opt. Express 2, 314 (1998).

    Article  CAS  Google Scholar 

  16. Maiwald, R. et al. Stylus ion trap for enhanced access and sensing. Nature Phys. 5, 551–554 (2009).

    Article  CAS  Google Scholar 

  17. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103, 259–328 (1998).

    Article  CAS  Google Scholar 

  18. Turchette, Q. A. et al. Heating of trapped ions from the ground state. Phys. Rev. A 61, 063418 (2000).

    Article  Google Scholar 

  19. Deslauriers, L. et al. Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70, 043408 (2004).

    Article  Google Scholar 

  20. Labaziewicz, J. et al. Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008).

    Article  Google Scholar 

  21. Drewsen, M., Mortensen, A., Martinussen, R., Staanum, P. & Sorensen, J. L. Nondestructive identification of cold and extremely localized single molecular ions. Phys. Rev. Lett. 93, 243201 (2004).

    Article  CAS  Google Scholar 

  22. Staanum, P. F., Højbjerre, K. & Drewsen, M. Sympathetically-cooled single ion mass spectrometry, in Practical aspects of trapped ion mass spectrometry (eds March, R. E & Todd, J.F.J.) (CRC Press, 2010).

  23. Major, F. G., Gheorghe, V. N. & Werthe, G. Charged Particle Traps: Springer Series on Atomic, Optical, and Plasma Physics (Springer, 2005).

    Google Scholar 

  24. Mitchell, T. B. et al. Direct observations of structural phase transitions in planar crystallized ion plasmas. Science 282, 1290–1293 (1998).

    Article  CAS  Google Scholar 

  25. Huang, X.-P., Bollinger, J. J., Mitchell, T. B. & Itano, W. M. Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 80, 73–76 (1998).

    Article  CAS  Google Scholar 

  26. Jensen, M. J., Hasegawa, T., Bollinger, J. J. & Dubin, D. H. E. Rapid heating of a strongly coupled plasma near the solid–liquid phase transition. Phys. Rev. Lett. 94, 025001 (2005).

    Article  CAS  Google Scholar 

  27. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, 2006).

    Google Scholar 

  28. Stowe, T. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997).

    Article  CAS  Google Scholar 

  29. Leibfried, D. et al. Experimental demonstration of a robust high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  CAS  Google Scholar 

  30. Harlander, M., Brownnutt, M., Hansel, W. & Blatt, R. Trapped-ion probing of light-induced charging effects on dielectrics. Preprint at http://arXiv.org/abs/1004.4842 (2010).

Download references

Acknowledgements

The authors thank K. Lehnert, D. Leibfried, D.J. Reilly, T. Rosenband and D.J. Wineland for useful discussions. Thanks also go to J. Kitching and U. Warring for their comments on the manuscript. The authors acknowledge research funding from the Defense Advanced Research Projects Agency (DARPA), the DARPA Optical Lattice Emulator program, and the National Institute of Standards and Technology (NIST) Quantum Information Program. M.J.B. acknowledges fellowship support from the Intelligence Advanced Research Projects Activity and Georgia Tech. H.U. acknowledges support from the Council for Scientific and Industrial Relations, South Africa. This manuscript is a contribution of NIST and not subject to US copyright.

Author information

Authors and Affiliations

Authors

Contributions

M.J.B., H.U. and J.J.B. conceived, designed and performed the experiments and co-wrote the manuscript. J.W.B. contributed to experimental measurements and data analysis. A.P.VD. assisted with optics hardware and the hardware–software interface.

Corresponding authors

Correspondence to Michael J. Biercuk or John J. Bollinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biercuk, M., Uys, H., Britton, J. et al. Ultrasensitive detection of force and displacement using trapped ions. Nature Nanotech 5, 646–650 (2010). https://doi.org/10.1038/nnano.2010.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing