Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Nanomaterials in preventive dentistry

Abstract

The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioadhesion and biofilm management in the oral cavity.
Figure 2: Early stages of tooth decay caused by bacterial biofilm.
Figure 3: Hierarchical structure of the dental enamel.
Figure 4: Dental erosion caused by acidic beverages or food in the oral cavity.

Similar content being viewed by others

References

  1. Selwitz, R. H., Ismail, A. I. & Pitts, N. B. Dental caries. Lancet 369, 51–59 (2007).

    Article  CAS  Google Scholar 

  2. Takahashi, N. & Nyvad, B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 42, 409–418 (2008).

    Article  CAS  Google Scholar 

  3. Filoche, S., Wong, L. & Sissons, C. H. Oral biofilms: emerging concepts in microbial ecology. J. Dent. Res. 89, 8–18 (2010).

    Article  CAS  Google Scholar 

  4. Hannig, C. & Hannig, M. The oral cavity - a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin. Oral Investig. 13, 123–139 (2009).

    Article  Google Scholar 

  5. Kolenbrander, P. E. et al. Bacterial interactions and successions during plaque development. Periodontol. 2000 42, 47–79 (2006).

    Article  Google Scholar 

  6. Sarikaya, M., Tamerler, C., Jen, A. K., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  7. Khang, D., Carpenter, J., Chun, Y. W., Pareta, R. & Webster, T. J. Nanotechnology for regenerative medicine. Biomed. Microdevices 10.1007/s10544-008-9264–6 (2008).

  8. Blossey, R. Self-cleaning surfaces-virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  CAS  Google Scholar 

  9. Solga, A., Cerman, Z., Striffler, B. F., Spaeth, M. & Barthlott, W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 2, 126–134 (2007).

    Article  Google Scholar 

  10. Hannig, M., Kriener, L., Hoth-Hannig, W., Becker-Willinger, C. & Schmidt, H. Influence of nanocomposite surface coating on biofilm formation in situ. J. Nanosci. Nanotechnol. 7, 4642–4648 (2007).

    CAS  Google Scholar 

  11. Baier, R. E. Surface behaviour of biomaterials: the theta surface for biocompatibility. J. Mater. Sci. Mater. Med. 17, 1057–1062 (2006).

    Article  CAS  Google Scholar 

  12. Rahiotis, C., Vougiouklakis, G. & Eliades, G. Characterization of oral films formed in the presence of a CPP-ACP agent: an in situ study. J. Dent. 36, 272–280 (2008).

    Article  CAS  Google Scholar 

  13. Reynolds, E. C., Cai, F., Shen, P. & Walker, G. D. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J. Dent. Res. 82, 206–211 (2003).

    Article  CAS  Google Scholar 

  14. Reynolds, E. C. Calcium phosphate-based remineralization systems: scientific evidence? Aust. Dent. J. 53, 268–273 (2008).

    Article  CAS  Google Scholar 

  15. Reynolds, E. C. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res. 76, 1587–1595 (1997).

    Article  CAS  Google Scholar 

  16. Cross, K. J., Huq, N. L. & Reynolds, E. C. Casein phosphopeptides in oral health - chemistry and clinical applications. Curr. Pharm. Des. 13, 793–800 (2007).

    Article  CAS  Google Scholar 

  17. Rose, R. K. Binding characteristics of streptococcus mutans for calcium and casein phosphopeptide. Caries Res. 34, 427–431 (2000).

    Article  CAS  Google Scholar 

  18. Venegas, S. C., Palacios, J. M., Apella, M. C., Morando, P. J. & Blesa, M. A. Calcium modulates interactions between bacteria and hydroxyapatite. J. Dent. Res. 85, 1124–1128 (2006).

    Article  CAS  Google Scholar 

  19. Bertassoni, L. E., Habelitz, S., Kinney, J. H., Marshall, S. J. & Marshall, G. W. Jr Biomechanical perspective on the remineralization of dentin. Caries Res. 43, 70–77 (2009).

    Article  CAS  Google Scholar 

  20. Fu-Zhai Cui, F. Z. & Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue Eng. Regen. Med. 1, 185–191 (2007).

    Article  Google Scholar 

  21. Wang, L., Guan, X., Yin, H., Moradian-Oldak, J. & Nancollas, G. H. Mimicking the self-organized microstructure of tooth enamel. J. Phys. Chem. C 112, 5892–5899 (2008).

    Article  CAS  Google Scholar 

  22. Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J. & Ritchie, R. O. The dentin-enamel junction and the fracture of human teeth. Nature Mater. 4, 229–232 (2005).

    Article  CAS  Google Scholar 

  23. Hannig, C., Berndt, D., Hoth-Hannig, W. & Hannig, M. The effect of acidic beverages on the ultrastructure of the acquired pellicle - an in situ study. Arch. Oral. Biol. 54, 518–526 (2009).

    Article  CAS  Google Scholar 

  24. Morgan, M. V. et al. The anticariogenic effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res. 42, 171–184 (2008).

    Article  CAS  Google Scholar 

  25. Cai, F. et al. Effect of addition of citric acid and casein phosphopeptide orphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res. 41, 377–383 (2007).

    Article  CAS  Google Scholar 

  26. Iijima, Y. et al. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. Caries Res. 38, 551–556 (2004).

    Article  CAS  Google Scholar 

  27. Cross, K. J., Huq, N. L., Palamara, J. E., Perich, J. W. & Reynolds, E. C. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 280, 15362–15369 (2005).

    Article  CAS  Google Scholar 

  28. Reynolds, E. C. et al. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 87, 344–348 (2008).

    Article  CAS  Google Scholar 

  29. Roveri, N. et al. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv. Mater. Res. 47–50, 821–824 (2008).

    Article  Google Scholar 

  30. Li, L. et al. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 18, 4079–4084 (2008).

    Article  CAS  Google Scholar 

  31. Roveri, N., Palazzo, B. & Iafisco, M. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin. Drug Deliv. 5, 861–877 (2008).

    Article  CAS  Google Scholar 

  32. Roveri, N. et al. Surface enamel remineralisation: biomimetic apatite nanocrystals and fluoride ions different effects. J. Nanomaterials 2009, 746383 (2009).

    Article  Google Scholar 

  33. Lv, K., Zhang, J., Meng, X. & Li, X. F. Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng. Mat. 330–332, 267–270 (2009).

    Google Scholar 

  34. Nakashima, S., Yoshie, M., Sano, H. & Bahar, A. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J. Oral Sci. 51, 69–77 (2009).

    Article  Google Scholar 

  35. Shibata, Y., He, L. H., Kataoka, Y., Miyazaki, T. & Swain, M. V. Micromechanical property recovery of human carious dentin achieved with colloidal nano-beta-tricalcium phosphate. J. Dent. Res. 87, 233–237 (2008).

    Article  CAS  Google Scholar 

  36. Vollenweider, M. et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 3, 936–943 (2007).

    Article  CAS  Google Scholar 

  37. Wang, L., Guan, X., Moradian-Oldak, J. & Nancollas, G. H. Amelogenin assemblies promote the formation of elongated apatite microstructures in a controlled crystallization system. J. Phys. Chem. 111, 6398–6404 (2007).

    CAS  Google Scholar 

  38. Fan, Y., Sun, Z., Wang, R., Abbott, C. & Moradian-Oldak, J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials 28, 3034–3042 (2007).

    Article  CAS  Google Scholar 

  39. Fan, Y., Sun, Z. & Moradian-Oldak, J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials 30, 478–483 (2009).

    Article  CAS  Google Scholar 

  40. Tao, J., Pan, H., Zeng, Y., Xu, X. & Tang, R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J. Phys. Chem. B 111, 13410–13418 (2007).

    Article  CAS  Google Scholar 

  41. Kirkham, J. et al. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 86, 426–430 (2007).

    Article  CAS  Google Scholar 

  42. Fowler, C. E., Li, M., Mann, S. & Margolis, H. C. Influence of surfactant assembly on the formation of calcium phosphate materials - a model for dental enamel formation. J. Mater. Chem. 15, 3317–3325 (2005).

    Article  CAS  Google Scholar 

  43. Chen, H., Clarkson, B. H., Sun, K. & Mansfield, J. F. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid Interf. Sci. 288, 97–103 (2005).

    Article  CAS  Google Scholar 

  44. Palazzo, B. et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomater. 5, 1241–1052 (2009).

    Article  CAS  Google Scholar 

  45. Chen, H. et al. Acellular synthesis of a human enamel-like microstructure. Adv. Mater. 18, 1846–1851 (2006).

    Article  CAS  Google Scholar 

  46. Yamagishi, K. et al. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature 433, 819 (2005).

    Article  CAS  Google Scholar 

  47. Iijima, Y. & Moradian-Oldak, J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 26, 1595–1603 (2005).

    Article  CAS  Google Scholar 

  48. He, G., Dahl, T., Veis, A. & George, A. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect. Tissue Res. 44, 240–5 (2003).

    Article  CAS  Google Scholar 

  49. Veis, A. Materials science. A window on biomineralization. Science 307, 1419–1420 (2005).

    Article  CAS  Google Scholar 

  50. Moradian-Oldak, J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 20, 293–305 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hannig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannig, M., Hannig, C. Nanomaterials in preventive dentistry. Nature Nanotech 5, 565–569 (2010). https://doi.org/10.1038/nnano.2010.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.83

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology