Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates

Abstract

Nanostructured biological materials inspire the creation of materials with tunable mechanical properties1,2,3. Strong cellulose nanofibrils derived from bacteria4 or wood5,6 can form ductile or tough networks7,8 that are suitable as functional materials9,10. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20–70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles11 (diameter, 40–120 nm). Unlike solvent-swollen gels12 and ferrogels13,14,15, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of elastic aerogel magnets and stiff magnetic nanopaper.
Figure 2: Magnetic aerogels at different loadings of cobalt ferrite nanoparticles.
Figure 3: Tunability of the mechanical properties and large-strain magnetic actuation.
Figure 4: Water release and deformability.

Similar content being viewed by others

References

  1. Mann, S. Molecular tectonics in biomineralization and biomimetic materials science. Nature 365, 499–505 (1993).

    Article  CAS  Google Scholar 

  2. Fratzl, P. Biomimetic materials research: what can we really learn from Nature's structural materials? J. R. Soc. Interface 4, 637–642 (2007).

    Article  CAS  Google Scholar 

  3. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  4. Iguchi M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—a masterpiece of Nature's arts. J. Mater. Sci. 5, 261–270 (2000).

    Article  Google Scholar 

  5. Henriksson, M., Henriksson, G., Berglund, L. A. & Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43, 3434–3441 (2007).

    Article  CAS  Google Scholar 

  6. Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491 (2007).

    Article  CAS  Google Scholar 

  7. Pääkkö, M. et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4, 2492–2499 (2008).

    Article  Google Scholar 

  8. Henriksson, M., Berglund, L. A., Isaksson, P., Lindström, T. & Nishino, T. Cellulose nanopaper structures of high toughness. Biomacromolecules 9, 1579–1585 (2008).

    Article  CAS  Google Scholar 

  9. Yano, H. et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005).

    Article  CAS  Google Scholar 

  10. Berglund L. A. & Peijs T. Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull. 35, 201–207 (2010).

    Article  CAS  Google Scholar 

  11. Majetich, S. A. in Nanostructured Materials; Processing, Properties and Applications (ed. Koch, C. C.) 439–485 (William Andrew, 2007).

    Book  Google Scholar 

  12. Okano, T. Biorelated Polymers and Gels (Academic Press, 1998).

    Google Scholar 

  13. Zrínyi, M., Barsi, L. & Büki, A. Ferrogel: a new magneto-controlled elastic medium. Polym. Gels Netw. 5, 415–427 (1997).

    Article  Google Scholar 

  14. Bonini, M., Lenz, S., Giorgi, R. & Baglioni, P. Nanomagnetic sponges for the cleaning of works of art. Langmuir 23, 8681–8685 (2007).

    Article  CAS  Google Scholar 

  15. Fuhrer, R., Athanassiou, E. K., Luechinger, N. A. & Stark, W. J. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5, 383–388 (2009).

    Article  CAS  Google Scholar 

  16. Ajayan, P. M., Schadler, L. S. & Braun, P. V. Nanocomposite Science and Technology (VCH-Wiley, 2004).

    Google Scholar 

  17. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  18. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  19. Warren, S. C. et al. Ordered mesoporous materials from metal nanoparticle–block copolymer self-assembly. Science 320, 1748–1752 (2008).

    Article  CAS  Google Scholar 

  20. Millan, A., Palacio, F., Snoeck, E., Serin, V. & Lecante, P. in Polymer Nanocomposites (eds Mai, Y. W. & Yu, Z.-Z.) 441–484 (Woodhead Publishing, 2006).

    Google Scholar 

  21. Prozorov, T., Prozorov, R. & Gedanken, A. Does the self-assembled coating of magnetic nanoparticles cover individual particles or agglomerates. Adv. Mater. 10, 1529–1532 (1998).

    Article  CAS  Google Scholar 

  22. Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Mater. 8, 979–985 (2009).

    Article  CAS  Google Scholar 

  23. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  24. Iwamoto, S., Kai, W., Isogai, A. & Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571–2576 (2009).

    Article  CAS  Google Scholar 

  25. Belford, D. S., Myers, A. & Preston, R. D. A study of the ordered adsorption of metal ions on the surface of cellulose microfibrils. Biochim. Biophys. Acta 34, 47–57 (1959).

    Article  CAS  Google Scholar 

  26. Olsson, R. T. et al. Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles. Chem. Mater. 17, 5109–5118 (2005).

    Article  CAS  Google Scholar 

  27. Salazar-Alvarez, G. et al. Enhanced coercivity in Co-rich near-stoichiometric CoxFe3−xO4+δ nanoparticles prepared in large batches. Chem. Mater. 19, 4957–4963 (2007).

    Article  CAS  Google Scholar 

  28. Maaz, K., Mumatz, A., Hasanain, S. K. & Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007).

    Article  CAS  Google Scholar 

  29. Chinnasamy, C. N. et al. Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio. J. Colloid Interface Sci. 263, 80–83 (2003).

    Article  CAS  Google Scholar 

  30. Gich, M. et al. High-coercivity ultralight transparent magnets. Appl. Phys. Lett. 82, 4307–4309 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stiftelsen för Strategisk Forskning Center BIOMIME at KTH (Royal Institute of Technology), the Swedish Research Council, the Swedish Foundation for Strategic Research, the Wallenberg Wood Science Center, the Knut and Alice Wallenberg Foundation (Mikro/Nanovetenskap), the Swedish Defence Research Agency, the Spanish Ministerio de Ciencia e Innovación (MAT2007-66309-C02 and CSD2006-00012 Consolider-Ingenio 2010), the Catalan Direcció General de Recerca (2009-DGR-1292) and the Academy of Finland. J.N. and G.S.A. thank the Dept. de Física of Universitat Autònoma de Barcelona for the use of the vibrating sample magnetometer and the Serveis científico-tècnics de la UAB for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

R.T.O. and M.A.S.A.S. designed the materials. R.T.O., M.A.S.A.S., G.S.A. and V.S. performed the experiments. L.B. and J.N. developed analysis methods, R.T.O., G.S.A., L.B. and J.N. collected and analysed the data. R.T.O., G.S.A. and O.I. conceived and carried out device demonstrations. R.T.O., G.S.A., L.A.B., O.I. and J.N. co-wrote the paper. All authors discussed the results and commented on the manuscript. G.S.A. and J.N. were responsible for investigating magnetic properties, L.B., R.T.O. and G.S.A. for microscopy/XRD, and L.A.B. for mechanical properties.

Corresponding authors

Correspondence to L. A. Berglund, O. Ikkala or J. Nogués.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 729 kb)

Supplementary information

Supplementary movie (MOV 12902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, R., Azizi Samir, M., Salazar-Alvarez, G. et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotech 5, 584–588 (2010). https://doi.org/10.1038/nnano.2010.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing