Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long spin-relaxation time in a single metal nanoparticle

Abstract

Spin-relaxation time is key to the performance of spin-based devices1,2. Although the spin-relaxation times of semiconductor materials are typically 100 ns (ref. 3), they are on the order of picoseconds in bulk metals due to the high density of scattering centres. In metallic nanoparticles, the spin-relaxation times can be strongly enhanced due to the quantum size effect4,5, reaching 150 ns in cobalt nanoparticles6. Here, we show that for extra electrons confined in a single ferromagnetic-metal MnAs nanoparticle embedded in a GaAs semiconductor matrix, the spin-relaxation time can reach 10 µs at 2 K, which is seven orders of magnitude longer than those of conventional metallic thin film or bulk systems, and the longest value ever reported for metallic nanoparticles. This long relaxation time is made possible by using epitaxially grown single-crystal devices with abrupt interfaces, and by avoiding surface contamination of the MnAs nanoparticle. Such a long spin-relaxation time can be very useful in nanoscale spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure.
Figure 2: Transport characteristics.
Figure 3: TMR oscillation.

Similar content being viewed by others

References

  1. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  2. Hai. P. N., Sugahara, S. & Tanaka, M. Reconfigurable logic gates using single-electron spin transistors. Jpn J. Appl. Phys. 46, 6579–6585 (2007).

    Article  CAS  Google Scholar 

  3. Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article  Google Scholar 

  4. Kawabata, A. Electronic properties of fine metallic particles. III. E.S.R. absorption line shape. J. Phys. Soc. Jpn 29, 902–911 (1970).

    Article  CAS  Google Scholar 

  5. Buttet, J., Car, R. & Charles W. M. Size dependence of the conduction-electron-spin- resonance g shift in a small sodium particle: orthogonalized standing-wave calculations. Phys. Rev. B 26, 2414–2431 (1982).

    Article  CAS  Google Scholar 

  6. Yakushiji, K. et al. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nature Mater. 4, 57–61 (2004).

    Article  Google Scholar 

  7. Kwiatkowski, A. et al. Structure and magnetism of MnAs nanocrystals embedded in GaAs as a function of post-growth annealing temperature. J. Appl. Phys. 101, 113912 (2007).

    Article  Google Scholar 

  8. Hai, P. N., Yokoyama, M., Ohya, S. & Tanaka, M. Tunneling magnetoresistance of MnAs thin film/GaAs/AlAs/GaAs:MnAs nanoclusters and its AlAs barrier thickness dependence. Appl. Phys. Lett. 89, 242106 (2006).

    Article  Google Scholar 

  9. Hai, P. N., Takahashi, K., Yokoyama, M., Ohya, S. & Tanaka, M. Magnetic properties of MnAs nanoclusters embedded in a GaAs semiconductor matrix. J. Magn. Magn. Mat. 310, 1932–1934 (2007).

    Article  CAS  Google Scholar 

  10. Hai, P. N., Sakata, Y., Yokoyama, M., Ohya, S. & Tanaka, M. Spin-valve effect by ballistic transport in ferromagnetic metal (MnAs)/semiconductor (GaAs) hybrid heterostructures. Phys. Rev. B 77, 214435 (2008).

    Article  Google Scholar 

  11. Panguluri, R. P. et al. Point contact spin spectroscopy of ferromagnetic MnAs epitaxial films. Phys. Rev. B 68, 201307 (2003).

    Article  Google Scholar 

  12. Majumdar, K. & Hershfield, S. Magnetoresistance of the double-tunnel-junction Coulomb blockade with magnetic metals. Phys. Rev. B 57, 11521–11526 (1998).

    Article  CAS  Google Scholar 

  13. Barnas, J. & Fert, A. Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions. Phys. Rev. Lett. 80, 1058–1061 (1998).

    Article  CAS  Google Scholar 

  14. Barnas, J. & Fert, A. Effects of spin accumulation on single-electron tunneling in a double ferromagnetic microjunction. Europhys. Lett. 44, 85–90 (1998).

    Article  CAS  Google Scholar 

  15. Brataas, A., Nazarov, Yu. V., Inoue, J. & Bauer, G. E. W. Non-equilibrium spin accumulation in ferromagnetic single-electron transistors. Eur. Phys. J. B 9, 421–430 (1999).

    Article  CAS  Google Scholar 

  16. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  17. Ravindran, P. et al. Magnetic, optical and magneto-optical properties of MnX (X=As, Sb, or Bi) from full-potential calculations. Phys. Rev. B 59, 15680–15693 (1999).

    Article  CAS  Google Scholar 

  18. Monod, P. & Janossy, A. Conduction electron spin resonance in gold. J. Low Temp. Phys. 26, 311–316 (1977).

    Article  CAS  Google Scholar 

  19. Monot, R., Châtelain, A. & Borel, J.-P. Conduction electron spin resonance in small particles of pure gold. Phys. Lett. A 34, 57–58 (1971).

    Article  CAS  Google Scholar 

  20. Gustafsson, P., Ohlsén, H. & Nordborg, L. Conduction-electron g-factor measurements in platinum. Phys. Rev. B 33, 3749–3755 (1986).

    Article  CAS  Google Scholar 

  21. Gordon, D. A., Marzke, R. F. & Glaunsinger, W. S. Size distribution and ESR of uniform microcrystal of platinum. J. Phys. (Paris) Colloques 38, 87–92 (1977).

    Google Scholar 

  22. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  23. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  Google Scholar 

  24. De Boeck, J. et al. Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Appl. Phys. Lett. 68, 2744–2746 (1996).

    Article  CAS  Google Scholar 

  25. Shimizu, H., Miyamura, M. & Tanaka, M. Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: enhanced magneto-optical effect and theoretical analysis. Appl. Phys. Lett. 78, 1523–1525 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grant-in-Aids for Scientific Research, the Special Coordination Programs for Promoting Science and Technology, R&D for Next-generation Information Technology by MEXT, PRESTO of JST. P.N.H. acknowledges support from the Global COE program (C04). The authors thank T. Fujii for his help in measurements at Cryogenic Research Centre, and members of the Nakano Laboratory at RCAST, University of Tokyo, for their help in the nanofabrication of our samples.

Author information

Authors and Affiliations

Authors

Contributions

P.N.H. designed the experiment, fabricated the samples, collected most of the data and carried out analysis of the data. S.O. provided experimental advice. M.T. planned and managed the research and supervised the experiment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Masaaki Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hai, P., Ohya, S. & Tanaka, M. Long spin-relaxation time in a single metal nanoparticle. Nature Nanotech 5, 593–596 (2010). https://doi.org/10.1038/nnano.2010.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing