Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectroscopy of few-electron single-crystal silicon quantum dots

Abstract

A defining feature of modern CMOS devices1 and almost all quantum semiconductor devices2,3,4,5,6,7,8,9 is the use of many different materials. For example, although electrical conduction often occurs in single-crystal semiconductors, gates are frequently made of metals and dielectrics are commonly amorphous. Such devices have demonstrated remarkable improvements in performance over recent decades, but the heterogeneous nature of these devices can lead to defects at the interfaces between the different materials, which is a disadvantage for applications in spintronics10,11 and quantum information processing12,13,14,15,16. Here we report the fabrication of a few-electron quantum dot in single-crystal silicon that does not contain any heterogeneous interfaces. The quantum dot is defined by atomically abrupt changes in the density of phosphorus dopant atoms, and the resulting confinement produces novel effects associated with energy splitting between the conduction band valleys. These single-crystal devices offer the opportunity to study how very sharp, atomic-scale confinement—which will become increasingly important for both classical and quantum devices—influences the operation and performance of devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Few-electron single-crystal silicon quantum dot device.
Figure 2: Stability diagram of the few-electron single-crystal silicon quantum dot.
Figure 3: Excited-state spectrum of a few-electron single-crystal silicon quantum dot.
Figure 4: Contribution of the tunnelling density of states from the irregularly shaped leads.

Similar content being viewed by others

References

  1. Leong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  Google Scholar 

  2. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  3. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  4. Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008).

    Article  CAS  Google Scholar 

  5. Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051–2055 (2007).

    Article  CAS  Google Scholar 

  6. Liu, H. W. et al. Pauli-spin-blockade transport through a silicon double quantum dot. Phys. Rev. B 77, 073310 (2008).

    Article  Google Scholar 

  7. Nordberg Nordberg, E. P. et al. Enhancement-mode double-top-gated metal-oxide-semiconductor nanostructures with tunable lateral geometry. Phys. Rev. B 80 115331 (2009).

    Article  Google Scholar 

  8. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  9. Zwanenburg, F. A., van Rijmenam, C. E. W. M., Fang, Y., Lieber, C. M. & Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 9, 1071–1079 (2009).

    Article  CAS  Google Scholar 

  10. de Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  Google Scholar 

  11. Culcer, D., Hu, X. D. & Das Sarma, S. Dephasing of Si spin qubits due to charge noise. Appl. Phys. Lett. 95, 073102 (2009).

    Article  Google Scholar 

  12. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  13. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  14. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  Google Scholar 

  15. Friesen, M. et al. Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301 (2003).

    Article  Google Scholar 

  16. Hollenberg, L. C. L. et al. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004).

    Article  Google Scholar 

  17. Lyding, J. W., Shen, T. C., Hubacek, J. S., Tucker, J. R. & Abeln, G. C. Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh-vacuum scanning tunneling microscope. Appl. Phys. Lett. 64, 2010–2012 (1994).

    Article  CAS  Google Scholar 

  18. Ruess, F. J. et al. Realization of atomically controlled dopant devices in silicon. Small 3, 563–567 (2007).

    Article  CAS  Google Scholar 

  19. Lin, D. S., Ku, T. S. & Sheu, T. J. Thermal reactions of phosphine with Si(100): a combined photoemission and scanning-tunneling-microscopy study. Surf. Sci. 424, 7–18 (1999).

    Article  CAS  Google Scholar 

  20. Wilson, H. F. et al. Phosphine dissociation on the Si(001) surface. Phys. Rev. Lett. 93, 226102 (2004).

    Article  CAS  Google Scholar 

  21. Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    Article  CAS  Google Scholar 

  22. Kouwenhoven, L. P. et al. in NATO Advanced Study Institute on Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön G.) 105–214 (Springer, 1997).

    Book  Google Scholar 

  23. Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. Nature Nanotech. 5, 133–137 (2010).

    Article  CAS  Google Scholar 

  24. Carter, D. J., Warschkow, O., Marks, N. A. & McKenzie, D. R. Electronic structure models of phosphorus delta-doped silicon. Phys. Rev. B 79, 033204 (2009).

    Article  Google Scholar 

  25. Qian, G. F., Chang, Y. C. & Tucker, J. R. Theoretical study of phosphorus delta-doped silicon for quantum computing. Phys. Rev. B 71, 045309 (2005).

    Article  Google Scholar 

  26. Boykin, T. B. et al. Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84, 115–117 (2004).

    Article  CAS  Google Scholar 

  27. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article  CAS  Google Scholar 

  28. Zumbühl, D. M., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Cotunneling spectroscopy in few-electron quantum dots. Phys. Rev. Lett. 93, 256801 (2004).

    Article  Google Scholar 

  29. Lim, W. H. et al. Observation of the single-electron regime in a highly tunable silicon quantum dot. Appl. Phys. Lett. 95, 242102 (2009).

    Article  Google Scholar 

  30. Könemann, J. et al. Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures. Phys. Rev. B 64 155314 (2001).

    Article  Google Scholar 

  31. Fuhrer, A., Füchsle, M., Reusch, T. C. G., Weber, B. & Simmons, M. Y. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9, 707–710 (2009).

    Article  CAS  Google Scholar 

  32. Ruess, F. J. et al. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology 16, 2446–2449 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge discussions with G. Klimeck and L.C.L. Hollenberg. This work was supported by the Australian Research Council, the Army Research Office (ARO) under contract no. W911NF-08-1-0527. M.Y.S. acknowledges a Federation Fellowship. The work at Wisconsin was supported by ARO under award W911NF-08-1-0482 and by the National Science Foundation under grant no. DMR-0805045.

Author information

Authors and Affiliations

Authors

Contributions

M.Fu. carried out the fabrication and measurements. M.Fr. conducted the theoretical work. M.Fu., S.M., F.Z., M.S. and M.E. analysed the data. M.S. planned the project. M.Fu., M.S., M.Fr. and M.E. prepared the manuscript.

Corresponding author

Correspondence to Michelle Y. Simmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuechsle, M., Mahapatra, S., Zwanenburg, F. et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nature Nanotech 5, 502–505 (2010). https://doi.org/10.1038/nnano.2010.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing