Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films

Abstract

Measurements on nanoscale structures constructed from high-temperature superconductors are expected to shed light on the origin of superconductivity in these materials1,2,3,4,5,6,7. To date, loops made from these compounds have had sizes of the order of hundreds of nanometres8–11. Here, we report the results of measurements on loops of La1.84Sr0.16CuO4, a high-temperature superconductor that loses its resistance to electric currents when cooled below 38 K, with dimensions down to tens of nanometres. We observe oscillations in the resistance of the loops as a function of the magnetic flux through the loops. The oscillations have a period of h/2e, and their amplitude is much larger than the amplitude of the resistance oscillations expected from the Little–Parks effect12,13. Moreover, unlike Little–Parks oscillations, which are caused by periodic changes in the superconducting transition temperature, the oscillations we observe are caused by periodic changes in the interaction between thermally excited moving vortices and the oscillating persistent current induced in the loops. However, despite the enhanced amplitude of these oscillations, we have not detected oscillations with a period of h/e, as recently predicted for nanoscale loops of superconductors with d-wave symmetry1,2,3,4,5,6, or with a period of h/4e, as predicted for superconductors that exhibit stripes7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterned superconducting film.
Figure 2: Magnetoresistance oscillations.
Figure 3: Comparison of measured and calculated magnetoresitance oscillations.
Figure 4: Periodicity of the magnetoresistance oscillations.

Similar content being viewed by others

References

  1. Barash, Y. S. Low-energy subgap states and the magnetic flux periodicity in d-wave superconducting rings. Phys. Rev. Lett. 100, 177003 (2008).

    Article  Google Scholar 

  2. Juricic, V., Herbut, I. F. & Tesanovic, Z. Restoration of the magnetic hc/e-periodicity in unconventional superconductors. Phys. Rev. Lett. 100, 187006 (2008).

    Article  Google Scholar 

  3. Loder, F. et al. Magnetic flux periodicity of h/e in superconducting loops. Nature Phys. 4, 112–115 (2008).

    Article  CAS  Google Scholar 

  4. Vakaryuk, V. Universal mechanism for breaking the hc/2e periodicity of flux-induced oscillations in small superconducting rings. Phys. Rev. Lett. 101, 167002 (2008).

    Article  Google Scholar 

  5. Wei, T.-C. & Goldbart, P. M. Emergence of h/e-period oscillations in the critical temperature of small superconducting rings threaded by magnetic flux. Phys. Rev. B 77, 224512 (2008).

    Article  Google Scholar 

  6. Zhu, J.-X. & Quan, H. T. Magnetic flux periodicity in a hollow d-wave superconducting cylinder. Phys. Rev. B 81, 054521 (2010).

    Article  Google Scholar 

  7. Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nature Phys. 5, 830–833 (2009).

    Article  CAS  Google Scholar 

  8. Gammel, P. L., Polakos, P. A., Rice, C. E., Harriott, L. R. & Bishop, D. J. Little–Parks oscillations of Tc in patterned microstructures of the oxide superconductor YBa2Cu3O7: experimental limits on fractional-statistics-particle theories. Phys. Rev. B 41, 2593–2596 (1990).

    Article  CAS  Google Scholar 

  9. Castellanos, A., Wordenweber, R., Ockenfuss, G., Hart, A. v. d. & Keck, K. Preparation of regular arrays of antidots in YBa2Cu3O7 thin films and observation of vortex lattice matching effects. Appl. Phys. Lett. 71, 962–964 (1997).

    Article  CAS  Google Scholar 

  10. Crisan, A. et al. Anisotropic vortex channeling in YBa2Cu3O7+δ thin films with ordered antidot arrays. Phys. Rev. B 71, 144504 (2005).

    Article  Google Scholar 

  11. Ooi, S., Mochiku, T., Yu, S., Sadki, E. S. & Hirata, K. Matching effect of vortex lattice in Bi2Sr2CaCu2O8+y with artificial periodic defects. Physica C 426–431, 113–117 (2005).

    Article  Google Scholar 

  12. Little, W. A. & Parks, R. D. Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962).

    Article  Google Scholar 

  13. Parks, R. D. & Little, W. A. Fluxoid quantization in a multiply-connected superconductor. Phys. Rev. A 133, 97–103 (1964).

    Article  Google Scholar 

  14. Mooij, J. E. & Schön, G. B. J. (eds) Proc. NATO Workshop on Coherence in Superconducting Networks. Physica. B 152, 1–302 (1988).

    Google Scholar 

  15. Tinkham, M. Consequences of fluxoid quantization in the transitions of superconducting films. Rev. Mod. Phys. 36, 268–276 (1964).

    Article  Google Scholar 

  16. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

  17. Koshnick, N. C., Bluhm, H., Huber, M. E. & Moler, K. A. Fluctuation superconductivity in mesoscopic aluminum rings. Science 318, 1440–1443 (2007).

    Article  CAS  Google Scholar 

  18. Wen, H. H. et al. Hole doping dependence of the coherence length in La2+xSrxCuO4 thin films. Europhys. Lett. 64, 790–796 (2003).

    Article  CAS  Google Scholar 

  19. Yeshurun, Y., Malozemoff, A. P. & Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911–949 (1996).

    Article  CAS  Google Scholar 

  20. Tinkham, M. Resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658–1661 (1988).

    Article  CAS  Google Scholar 

  21. Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  CAS  Google Scholar 

  22. London, F. On the problem of the molecular theory of superconductivity. Phys. Rev. 74, 562–573 (1948).

    Article  CAS  Google Scholar 

  23. Kirtley, J. R. et al. Fluxoid dynamics in superconducting thin film rings. Phys. Rev. B 68, 214505 (2003).

    Article  Google Scholar 

  24. Kogan, V. G., Clem, J. R. & Mints, R. G. Properties of mesoscopic superconducting thin-film rings: London approach. Phys. Rev. B 69, 064516 (2004).

    Article  Google Scholar 

  25. Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article  Google Scholar 

  26. Qiu, C. & Qian, T. Numerical study of the phase slip in two-dimensional superconducting strips. Phys. Rev. B 77, 174517 (2008).

    Article  Google Scholar 

  27. Yeshurun, Y. & Malozemoff, A. P. Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal: an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202–2205 (1988).

    Article  CAS  Google Scholar 

  28. Hopkins, D. S., Pekker, D., Goldbart, P. M. & Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 308, 1762–1765 (2005).

    Article  CAS  Google Scholar 

  29. Pekker, D., Bezryadin, A., Hopkins, D. S. & Goldbart, P. M. Operation of a superconducting nanowire quantum interference device with mesoscopic leads. Phys. Rev. B 72, 104517 (2005).

    Article  Google Scholar 

  30. Hoole, A. C. F., Welland, M. E. & Broers, A. N. Negative PMMA as a high-resolution resist—the limits and possibilities. Semicond. Sci. Technol. 12, 1166–1170 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Frydman, B. Ya. Shapira, B. Rosenstein, E. Zeldov, Y. Oreg, O. Pelleg, A. Bollinger, A. Gozar, Z. Radović and V. Vinokur for helpful discussions. Y.Y. and A.S. acknowledge support of the Deutsche Forschungsgemeinschaft through the Deutsch–Israelische Projektkooperation (grant no. 563363). I.S. thanks the Israeli Ministry of Science and Technology for an Eshkol scholarship. The work at BNL was supported by the US Department of Energy (contract no. MA-509-MACA).

Author information

Authors and Affiliations

Authors

Contributions

G.L and I.B. synthesized and characterized the superconducting films. I.S. designed and made the patterns, performed the magnetoresistance measurements and analysed the data. All authors contributed to the theoretical interpretation and were involved in the completion of the manuscript.

Corresponding author

Correspondence to Ilya Sochnikov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sochnikov, I., Shaulov, A., Yeshurun, Y. et al. Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nature Nanotech 5, 516–519 (2010). https://doi.org/10.1038/nnano.2010.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing