Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mimicking the colourful wing scale structure of the Papilio blumei butterfly

Abstract

The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures1,2,3. Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches4,5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural photonic structure.
Figure 2: Sample fabrication.
Figure 3: An artificial optical mimic.
Figure 4: Modified mimic with enhanced optical performance.

Similar content being viewed by others

References

  1. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  Google Scholar 

  2. Land, M. F. The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24, 75–106 (1972).

    Article  CAS  Google Scholar 

  3. Doucet, S. & Meadows, M. Iridescence: A functional perspective. J. R. Soc. Interface 6, S115–S132 (2009).

    Article  Google Scholar 

  4. Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nature Nanotech 2, 347–353 (2007).

    Article  CAS  Google Scholar 

  5. Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J. Appl. Phys. 44, L48–L50 (2005).

    Article  CAS  Google Scholar 

  6. Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331, (2006).

    Article  CAS  Google Scholar 

  7. Vukusic, P., Sambles, R. J. & Lawrence, C. R. Colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).

    Article  CAS  Google Scholar 

  8. Vukusic, P., Sambles, R. J., Lawrence, C. R. & Wakely, G. Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl. Opt. 40, 1116–1125 (2001).

    Article  CAS  Google Scholar 

  9. Gaillot, D. P. et al. Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. Phys. Rev. E 78, 031922 (2008).

    Article  Google Scholar 

  10. Coyle, S., Prakash, G. V., Baumberg, J. J., Abdelsalam, M. & Bartlett, P. N. Spherical micro-mirrors from templated self-assembly: geometric reflectivity on the micron scale. Appl. Phys. Lett. 83, 767–769 (2003).

    Article  CAS  Google Scholar 

  11. Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266, 1403–1411 (1999).

    Article  Google Scholar 

  12. Bartlett, P. N., Birkin, P. R. & Ghanem, M. A. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun. 1671–1672 (2000).

  13. Braun, P. V. & Wiltzius, P. Macroporous materials—electrochemically grown photonic crystals. Curr. Opin. Colloid Interface Sci. 7, 116–123 (2002).

    Article  CAS  Google Scholar 

  14. Wijnhoven, J. E. G. J. et al. Electrochemical assembly of ordered macropores in gold. Adv. Mater. 12, 888–890 (2000).

    Article  CAS  Google Scholar 

  15. Puurunen, R. L. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the EPSRC (EP/G060649/1, EP/E040241, EP/C511786/1). M.K. acknowledges support from DAAD (German Academic Exchange Service) and the Cambridge Newton Trust.

Author information

Authors and Affiliations

Authors

Contributions

P.V. and M.K. performed the studies of the natural photonic structure. M.K., M.S., P.S. and U.S. conceived and designed the artificial mimics. M.S. provided the colloidal templates. P.S. and S.M. performed the electro-deposition. P.S. produced the photolithographic resist pattern for the modified mimic. M.K. and P.S. realized the atomic layer deposition. M.K. characterized the optical performance and the topology of the samples. F.H. and J.B. provided the algorithms necessary to perform the optical measurements and to create the spectral maps. M.K., J.B., U.S. and P.V. analysed the data. M.K., U.S. and J.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jeremy J. Baumberg or Ullrich Steiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolle, M., Salgard-Cunha, P., Scherer, M. et al. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotech 5, 511–515 (2010). https://doi.org/10.1038/nnano.2010.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing