Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning payload delivery in tumour cylindroids using gold nanoparticles

Abstract

Nanoparticles have great potential as controllable drug delivery vehicles because of their size and modular functionality. Timing and location are important parameters when optimizing nanoparticles for delivery of chemotherapeutics. Here, we show that gold nanoparticles carrying either fluorescein or doxorubicin molecules move and localize differently in an in vitro three-dimensional model of tumour tissue, depending on whether the nanoparticles are positively or negatively charged. Fluorescence microscopy and mathematical modelling show that uptake, not diffusion, is the dominant mechanism in particle delivery. Our results indicate that positive particles may be more effective for drug delivery because they are taken up to a greater extent by proliferating cells. Negative particles, which diffuse more quickly, may perform better when delivering drugs deep into tissues. An understanding of how surface charge can control tissue penetration and drug release may overcome some of the current limitations in drug delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the delivery of payload by gold nanoparticles.
Figure 2: Fluorescence calibration and cellular uptake and release of FITC–AuNPs.
Figure 3: Release of FITC–SH from AuNPs in tumour cylindroids.
Figure 4: Doxorubicin release in cylindroids.
Figure 5: Effect of surface charge on diffusivity through extracellular matrix material.
Figure 6: Rate constants of cellular uptake and predictions of particle and ligand distribution in tumours.

Similar content being viewed by others

References

  1. Hicks, K. O., Pruijn, F. B., Sturman, J. R., Denny, W. A. & Wilson, W. R. Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures. Cancer Res. 63, 5970–5977 (2003).

    CAS  Google Scholar 

  2. Lankelma, J. et al. Doxorubicin gradients in human breast cancer. Clin. Cancer Res. 5, 1703–1707 (1999).

    CAS  Google Scholar 

  3. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nature Rev. Cancer 6, 583–592 (2006).

    Article  CAS  Google Scholar 

  4. Jain, R. K. Transport of molecules, particles and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263 (1999).

    Article  CAS  Google Scholar 

  5. Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. & Tannock, I. F. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782–8788 (2005).

    Article  CAS  Google Scholar 

  6. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  Google Scholar 

  7. Tredan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Article  CAS  Google Scholar 

  8. Grantab, R., Sivananthan, S. & Tannock, I. F. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 66, 1033–1039 (2006).

    Article  CAS  Google Scholar 

  9. Goldacre, R. J. & Sylven, B. On the access of blood-borne dyes to various tumour regions. Br. J. Cancer 16, 306–322 (1962).

    Article  CAS  Google Scholar 

  10. You, C. C., Verma, A. & Rotello, V. M. Engineering the nanoparticle–biomacromolecule interface. Soft Matter 2, 190–204 (2006).

    Article  CAS  Google Scholar 

  11. You, C. C., De, M., Han, G. & Rotello, V. M. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc. 127, 12873–12881 (2005).

    Article  CAS  Google Scholar 

  12. Goodman, C. M. et al. DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements. Chem. Biol. Drug. Des. 67, 297–304 (2006).

    Article  CAS  Google Scholar 

  13. McIntosh, C. M. et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc. 123, 7626–7629 (2001).

    Article  CAS  Google Scholar 

  14. You, C. C., De, M., Han, G. & Rotello, V. M. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc. 127, 12873–12881 (2005).

    Article  CAS  Google Scholar 

  15. Thomas, M. & Klibanov, A. M. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA 100, 9138–9143 (2003).

    Article  CAS  Google Scholar 

  16. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

    Article  CAS  Google Scholar 

  17. Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2, 18–29 (2007).

    Article  Google Scholar 

  18. Chithrani, B. D. & Chan, W. C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  CAS  Google Scholar 

  19. Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol. Bioeng. 94, 710–721 (2006).

    Article  CAS  Google Scholar 

  20. Kim, B. J. & Forbes, N. S. Flux analysis shows that hypoxia-inducible-factor-1-alpha minimally affects intracellular metabolism in tumor spheroids. Biotechnol. Bioeng. 96, 1167–1182 (2007).

    Article  CAS  Google Scholar 

  21. Freyer, J. P. & Sutherland, R. M. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res. 40, 3956–3965 (1980).

    CAS  Google Scholar 

  22. Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007).

    Article  CAS  Google Scholar 

  23. Sutherland, R. M. Cell and environment interactions in tumor microregions—the multicell spheroid model. Science 240, 177–184 (1988).

    Article  CAS  Google Scholar 

  24. Kim, B. J. & Forbes, N. S. Single-cell analysis demonstrates how nutrient deprivation creates apoptotic and quiescent cell populations in tumor cylindroids. Biotechnol. Bioeng. 101, 797–810 (2008).

    Article  CAS  Google Scholar 

  25. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

    Article  CAS  Google Scholar 

  26. De, M., You, C. C., Srivastava, S. & Rotello, V. M. Biomimetic interactions of proteins with functionalized nanoparticies: a thermodynamic study. J. Am. Chem. Soc. 129, 10747–10753 (2007).

    Article  CAS  Google Scholar 

  27. Chompoosor, A., Han, G. & Rotello, V. M. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug. Chem. 19, 1342–1345 (2008).

    Article  CAS  Google Scholar 

  28. Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006).

    Article  CAS  Google Scholar 

  29. Jones, D. P. et al. Glutathione measurement in human plasma evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clin. Chim. Acta 275, 175–184 (1998).

    Article  CAS  Google Scholar 

  30. Hassan, S. S. M. & Rechnitz, G. A. Determination of glutathione and glutathione-reductase with a silver sulfide membrane-electrode. Anal. Chem. 54, 1972–1976 (1982).

    Article  CAS  Google Scholar 

  31. Baldwin, A. L., Wu, N. Z. & Stein, D. L. Endothelial surface-charge of intestinal mucosal capillaries and its modulation by dextran. Microvasc. Res. 42, 160–178 (1991).

    Article  CAS  Google Scholar 

  32. Ghitescu, L. & Fixman, A. Surface-charge distribution on the endothelial-cell of liver sinusoids. J. Cell Biol. 99, 639–647 (1984).

    Article  CAS  Google Scholar 

  33. Chen, A. M. et al. Oligodeoxynucleotide nanostructure formation in the presence of polypropyleneimine dendrimers and their uptake in breast cancer cells. Nanotechnology 17, 5449–5460 (2006).

    Article  CAS  Google Scholar 

  34. Holzapfel, V., Musyanovych, A., Landfester, K., Lorenz, M. R. & Mailander, V. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys. 206, 2440–2449 (2005).

    Article  CAS  Google Scholar 

  35. Mislick, K. A. & Baldeschwieler, J. D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl Acad. Sci. USA 93, 12349–12354 (1996).

    Article  CAS  Google Scholar 

  36. Tauskela, J. S. et al. Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Glia 30, 329–341 (2000).

    Article  CAS  Google Scholar 

  37. Orwar, O., Fishman, H. A., Ziv, N. E., Scheller, R. H. & Zare, R. N. Use of 2,3-naphthalenedicarboxaldehyde derivatization for single-cell analysis of glutathione by capillary electrophoresis and histochemical-localization ion by fluorescence microscopy. Anal. Chem. 67, 4261–4268 (1995).

    Article  Google Scholar 

  38. Davies, C. D., Berk, D. A., Pluen, A. & Jain, R. K. Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br. J. Cancer 86, 1639–1644 (2002).

    Article  CAS  Google Scholar 

  39. Pluen, A. et al. Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl Acad. Sci. USA 98, 4628–4633 (2001).

    Article  CAS  Google Scholar 

  40. Ramanujan, S. et al. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83, 1650–1660 (2002).

    Article  CAS  Google Scholar 

  41. Kleinman, H. K. et al. Isolation and characterization of type-IV procollagen, laminin, and heparan-sulfate proteoglycan from the Ehs sarcoma. Biochemistry (Mosc) 21, 6188–6193 (1982).

    Article  CAS  Google Scholar 

  42. Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).

    CAS  Google Scholar 

  43. Jain, R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987).

    CAS  Google Scholar 

  44. Young, J. S., Lumsden, C. E. & Stalker, A. L. The significance of the tissue pressure of normal testicular and of neoplastic (Brown–Pearce carcinoma) tissue in the rabbit. J. Pathol. Bacteriol. 62, 313–333 (1950).

    Article  CAS  Google Scholar 

  45. You, C. C., De, M. & Rotello, V. M. Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with alpha-chymotrypsin. Org. Lett. 7, 5685–5688 (2005).

    Article  CAS  Google Scholar 

  46. Paciotti, G. F. et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Institutes of Health (grant nos 1R21CA112335-01A and 1R01CA120825-01A1) and the National Science Foundation (grant no. DMI-0531171).

Author information

Authors and Affiliations

Authors

Contributions

N.F. and V.R. conceived and designed the experiments. B.K., G.H., B.T. and C.K. performed the experiments. G.H. synthesized the FITC nanoparticles. C.K. synthesized the DOX nanoparticles. B.K. performed all cell and cylindroid experiments with FITC nanoparticles and wrote all mathematical models. B.T. performed all cylindroid and cell experiments with DOX nanoparticles. B.K., B.T. and N.F. analysed the data. V.R. contributed materials. B.K. and N.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Neil S. Forbes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B., Han, G., Toley, B. et al. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nature Nanotech 5, 465–472 (2010). https://doi.org/10.1038/nnano.2010.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.58

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research