Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution

Abstract

High-resolution imaging of low-atomic-number chemical elements using electron microscopy is challenging and may require the use of high doses of electrons. Electron diffractive imaging, which creates real-space images using diffraction intensities and phase retrieval methods, could overcome such issues, although it is also subject to limitations. Here, we show that a combination of electron diffractive imaging and high-resolution transmission electron microscopy can image individual TiO2 nanocrystals with a resolution of 70 pm while exposing the specimen to a low dose of electrons. Our approach, which does not require spherical and chromatic aberration correction, can reveal the location of light atoms (oxygen) in the crystal lattice. We find that the unit cell in nanoscale TiO2 is subtly different to that in the corresponding bulk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM analysis of an ‘anatase-like’ TiO2 rod-shaped nanocrystal along its 〈1, 0, 0〉 zone axis.
Figure 2: Phase-retrieved diffractive image of a distorted ‘anatase-like’ TiO2 nanocrystal lattice along the 〈1, 0, 0〉 direction.
Figure 3: Effect of finite resolution and thermal displacements on the visibility of oxygen spots in the projected electron potential of the distorted ‘anatase-like’ structure in the 〈100〉 orientation.

Similar content being viewed by others

References

  1. Ozin, G. A., Arsenault, A. C. & Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials 876 (RSC Publishing, 2008).

  2. Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

    Article  CAS  Google Scholar 

  3. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  4. Abbey, B. et al. Keyhole coherent diffractive imaging. Nature Phys. 4, 394–398 (2008).

    Article  CAS  Google Scholar 

  5. Huang, W. J. et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nature Mater. 7, 308–313 (2008).

    Article  CAS  Google Scholar 

  6. Huang, W. J., Zuo, J. M., Jiang, B., Kwon, K. W. & Shim, M. Sub-ångström-resolution diffractive imaging of single nanocrystals. Nature Phys. 5, 129–133 (2009).

    Article  CAS  Google Scholar 

  7. Sayre, D., Chapman, H. N. & Miao, J. On the extendibility of X-ray crystallography to noncrystals. Acta Crystallogr. A 54, 232–239 (1998).

    Article  Google Scholar 

  8. Marchesini, S. Invited article: A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 011301 (2007).

    Article  CAS  Google Scholar 

  9. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101R (2003).

    Article  Google Scholar 

  10. Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  11. Fan, H. et al. Image processing in high-resolution electron microscopy using direct method. Acta Crystallogr. A 41, 163–165 (1985)

    Article  Google Scholar 

  12. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003).

    Article  CAS  Google Scholar 

  13. Zou, X. D. Crystal structure determination by crystallographic image processing, in Electron Crystallography (eds Dorset, D. L., Hovmoller, S. & Zou, X. D.) 163–181, Nano ASI Series C (Kluwer Academic Publishers, 1997).

  14. Weirich, T. E., Winterer, M., Seifried, S., Hahn, H. & Fuess, H. Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2 . Ultramicroscopy 81, 263–270 (2000).

    Article  CAS  Google Scholar 

  15. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009).

    Article  CAS  Google Scholar 

  16. Nellist, P. D. et al. Direct sub-ångström imaging of a crystal lattice. Science 305, 1741 (2004).

    Article  CAS  Google Scholar 

  17. Mkhoyan, K. A., Batson, P. E., Cha, J., Schaff, W. J. & Silcox, J. Direct determination of local lattice polarity in crystals. Science 312, 1354 (2006).

    Article  CAS  Google Scholar 

  18. Bokel, R. M. J., Jansen, J. & Zandbergen H. W. Determination of the orientation in small areas of the exit wave. Ultramicroscopy 87, 89–96 (2000).

    Article  Google Scholar 

  19. Miedema, M. A. O., van den Bos, A. & Buist, A. Experimental design of the exit wave reconstruction from a transmission electron microscope defocus series. IEEE Trans. Inst. Meas. 43, 181–186 (1994).

    Article  Google Scholar 

  20. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007).

    Article  CAS  Google Scholar 

  21. Cozzoli, P. D., Kornowski, A. & Weller, H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539–14548 (2003).

    Article  CAS  Google Scholar 

  22. Stadelmann, P. A. EMS—a software package for electron diffraction analysis and HREM image simulation in material science. Ultramicroscopy 21, 131–145 (1987).

    Article  CAS  Google Scholar 

  23. Caliandro, R. et al. Phasing at resolution higher than the experimental resolution. Acta Crystallogr. D 61, 556–565 (2005).

    Article  Google Scholar 

  24. Caliandro, R. et al. Ab initio phasing of proteins with heavy atoms at non-atomic resolution: pushing the size limit of solvable structures up to 7,890 non-H atoms in the asymmetric unit. J. Appl. Crystallogr. 41, 548–553 (2008).

    Article  CAS  Google Scholar 

  25. Djerdj, I. & Tonejc, A. M. Structural investigations of nanocrystalline TiO2 samples. J. Alloys Comp. 413, 159–174 (2006).

    Article  CAS  Google Scholar 

  26. Djerdj, I., Tonejc, A. M., Bijelic, M., Vranesa, V. & Turkovic, A. Transmission electron microscopy studies of nanostructured TiO2 films on various substrates. Vacuum 80, 371–378 (2005).

    Article  CAS  Google Scholar 

  27. Tonejc, A. M., Djerdj, I. & Tonejc, A. An analysis of evolution of grain size—lattice parameters dependence in nanocrystalline TiO2 anatase. Mater. Sci. Eng. C 19, 85–89 (2002).

    Article  Google Scholar 

  28. Varghese, S. et al. Nonlinear size dependence of anatase TiO2 lattice parameters. Appl. Phys. Lett. 88, 243103 (2006).

    Article  Google Scholar 

  29. Zhang, H., Chen, B. & Banfield, J. F. The size dependence of the surface free energy of titania nanocrystals. Phys. Chem. Chem. Phys. 11, 2553–2558 (2009).

    Article  CAS  Google Scholar 

  30. Cozzoli, P. D. (ed.) Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures 453 (Transworld Research Network, 2008).

  31. Thompson, T. L. & Yates, J. T., Jr. Surface science studies of the photoactivation of TiO2—new photochemical processes. Chem. Rev. 106, 4428–4453 (2006).

    Article  CAS  Google Scholar 

  32. Ganduglia-Pirovano, M. V., Hofmann, A. & Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007).

    Article  CAS  Google Scholar 

  33. Finazzi, E., Di Valentin, C. & Pacchioni, G. Nature of Ti interstitials in reduced bulk anatase and rutile TiO2 . J. Phys. Chem. C 113, 3382–3385 (2009).

    Article  CAS  Google Scholar 

  34. Doyle, P. A. & Turner, P. S. Crystal physics, diffraction, theoretical and general crystallography. Acta Crystallogr. A 24, 390–397 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.D.C. and C.G. conceived the EDI methodology, which was further developed in collaboration with E.C., who performed HRTEM and n-ED experiments. C.G. performed the X-ray diffraction experiments and L.D.C. developed and applied the algorithm for the phase-retrieval processing. P.D.C. conceived and supervised development of colloidal TiO2 synthesis. G.C. synthesized the TiO2 nanocrystals. L.D.C. wrote the paper in close collaboration with C.G., E.C. and P.D.C. The results were discussed by all the authors.

Corresponding author

Correspondence to Cinzia Giannini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Caro, L., Carlino, E., Caputo, G. et al. Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution. Nature Nanotech 5, 360–365 (2010). https://doi.org/10.1038/nnano.2010.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing