Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

Abstract

Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K)1, the field has since advanced to include room-temperature observations2, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro3,4 and in vivo5,6. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spherical colloids are efficient lenses for single-molecule imaging.
Figure 2: Single fluorophores in dry and wet samples can be imaged efficiently with colloidal lenses and a low light collection efficiency objective.
Figure 3: Cy3 photobleaching lifetimes increase in the presence of TiO2 colloids.
Figure 4: Single-molecule DNA polymerase activity can be observed with colloidal lenses and a ×20 0.5 NA air objective.

Similar content being viewed by others

References

  1. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  CAS  Google Scholar 

  2. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  CAS  Google Scholar 

  3. Ambrose, W. P. et al. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 99, 2929–2956 (1999).

    Article  CAS  Google Scholar 

  4. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  5. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  6. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell. Biol. 2, 168–172 (2000).

    Article  CAS  Google Scholar 

  7. Koyama, K., Yoshita, M., Baba, M., Suemoto, T. & Akiyama, H. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl. Phys. Lett. 75, 1667–1669 (1999).

    Article  CAS  Google Scholar 

  8. Brody, J. P. & Quake, S. R. A self-assembled microlensing rotational probe. Appl. Phys. Lett. 74, 144–146 (1999).

    Article  CAS  Google Scholar 

  9. Helseth, L. E. & Fischer, T. M. Cooperative microlenses. Opt. Express 12, 3428–3435 (2004).

    Article  CAS  Google Scholar 

  10. Helseth, L. E., Wen, H. Z. & Fischer, T. M. Colloidal optomagnetic dimmer. Langmuir 22, 3941–3944 (2006).

    Article  CAS  Google Scholar 

  11. Domachuk, P. et al. Application of optical trapping to beam manipulation in optofluidics. Opt. Express 13, 7265–7275 (2005).

    Article  CAS  Google Scholar 

  12. Wu, M. H. & Whitesides, G. M. Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography. Appl. Phys. Lett. 78, 2273–2275 (2001).

    Article  CAS  Google Scholar 

  13. Denk, R., Piglmayer, K. & Bäuerle, D. Laser-induced etching and deposition of W using a-SiO2 microspheres. Appl. Phys. A: Mater. 76, 549–550 (2003).

    Article  CAS  Google Scholar 

  14. McLeod, E. & Arnold, C. B. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech. 3, 413–417 (2008).

    Article  CAS  Google Scholar 

  15. Tatarkova, S. A., Carruthers, A. E. & Dholakia, K. One-dimensional optically bound arrays of microscopic particles. Phys. Rev. Lett. 89, 283901 (2002).

    Article  CAS  Google Scholar 

  16. Wenger, J., Gerard, D., Aouani, H. & Rigneault, H. Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres. Anal. Chem. 80, 6800–6804 (2008).

    Article  CAS  Google Scholar 

  17. Kneipp, J. et al. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Anal. Chem. 80, 4247–4251 (2008).

    Article  CAS  Google Scholar 

  18. Barnes, M. D., Ng, K. C., Whitten, W. B. & Ramsey, J. M. Detection of single Rhodamine 6G molecules in levitated microdroplets. Anal. Chem. 65, 2360–2365 (1993).

    Article  CAS  Google Scholar 

  19. Brooks Shera, E., Seitzinger, N. K., Davis, L. M., Keller, R. A. & Soper, S. A. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557 (1990).

    Article  Google Scholar 

  20. Furuike, S. et al. Temperature dependence of the rotation and hydrolysis activities of F1-ATPase. Biophys. J. 95, 761–770 (2008).

    Article  CAS  Google Scholar 

  21. Farjadpour, A. et al. Improving accuracy by subpixel smoothing in the finite-difference time-domain. Opt. Lett. 31, 2972–2974 (2006).

    Article  CAS  Google Scholar 

  22. Whitmore, P. M., Alivisatos, A. P. & Harris, C. B. Distance dependence of electronic energy transfer to semiconductor surfaces: 3nπ* pyrazine/GaAs(110). Phys. Rev. Lett. 50, 1092–1094 (1983).

    Article  CAS  Google Scholar 

  23. Sluch, M. I., Vitukhnovsky, A. G. & Petty, M. C. Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor. Phys. Lett. A 200, 61–64 (1995).

    Article  CAS  Google Scholar 

  24. Campion, A., Gallo, A. R., Harris, C. B., Robota, H. J. & Whitmore, P. M. Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances. Chem. Phys. Lett. 73, 447–450 (1980).

    Article  CAS  Google Scholar 

  25. Crackel, R. L. & Struve, W. S. Non-radiative excitation decay of cresyl violet on TiO2: variation with dye–surface separation. Chem. Phys. Lett. 120, 473–476 (1985).

    Article  CAS  Google Scholar 

  26. Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  CAS  Google Scholar 

  27. Jin, S. & Lian, T. Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles. Nano Lett. 9, 2448–2454 (2009).

    Article  CAS  Google Scholar 

  28. Robel, I., Kuno, M. & Kamat, P. V. Size-dependent electron injection from Excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 4136–4137 (2007).

    Article  CAS  Google Scholar 

  29. Chen, C., Qi, X. & Zhou, B. Photosensitization of colloidal TiO2 with a cyanine dye. J. Photochem. Photobiol. A 109, 155–158 (1997).

    Article  CAS  Google Scholar 

  30. Schwartz, J. J. & Quake, S. R. Single molecule measurement of the ‘speed limit’ of DNA polymerase. Proc. Natl Acad. Sci. USA 106, 20294–20299 (2009).

    Article  CAS  Google Scholar 

  31. Schwartz, J. J. & Quake, S. R. High density single molecule surface patterning with colloidal epitaxy. Appl. Phys. Lett. 91, 083902 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Brongersma, H.J. Lee and M.F. Yanik for discussions, and E. Townsend for writing the instrumentation software. This work was supported in part by the Department of Defense Advanced Research Projects Agency Optofluidics Center, the National Human Genome Research Institute (5R01HG003594-04), and the Howard Hughes Medical Institute. S.S. was funded by a Marie Curie fellowship (MOIF-CT-2006-0400320 FRETANDFORCE).

Author information

Authors and Affiliations

Authors

Contributions

J.J.S., S.S. and S.R.Q. conceived and designed the experiments. J.J.S. and S.S. performed the experiments. J.J.S. and S.S. analysed the data. J.J.S., S.S. and S.R.Q. wrote the paper.

Corresponding author

Correspondence to Stephen R. Quake.

Ethics declarations

Competing interests

We have filed a patent on colloidal lenses.

Supplementary information

Supplementary information

Supplementary information (PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J., Stavrakis, S. & Quake, S. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nature Nanotech 5, 127–132 (2010). https://doi.org/10.1038/nnano.2009.452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing