Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands

Abstract

Nanoscale components can be self-assembled into static three-dimensional structures1,2,3,4,5,6, arrays7,8,9 and clusters10,11,12,13 using biomolecular motifs. The structural plasticity of biomolecules and the reversibility of their interactions can also be used to make nanostructures that are dynamic, reconfigurable and responsive. DNA has emerged as an ideal biomolecular motif for making such nanostructures, partly because its versatile morphology permits in situ conformational changes using molecular stimuli12,14,15,16,17,18,19,20,21,22. This has allowed DNA nanostructures to exhibit reconfigurable topologies and mechanical movement17,18. Recently, researchers have begun to translate this approach to nanoparticle interfaces18,23,24, where, for example, the distances between nanoparticles can be modulated, resulting in a distance-dependent plasmonic response18,23,25. Here, we report the assembly of nanoparticles into three-dimensional superlattices and dimer clusters, using a reconfigurable DNA device that acts as an interparticle linkage. The interparticle distances in the superlattices and clusters can be modified, while preserving structural integrity, by adding molecular stimuli (simple DNA strands) after the self-assembly processes has been completed. Both systems were found to switch between two distinct rigid states, but a transition to a flexible device configuration within a superlattice showed a significant hysteresis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA-based device control of interparticle morphology.
Figure 2: Three-dimensional superlattice reconfiguration.
Figure 3: Cluster reconfiguration.
Figure 4: Superlattice and dimer comparison.

Similar content being viewed by others

References

  1. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  2. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  3. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  4. Hill, H. D., Macfarlane, R. J., Senesei, A. J., Lee, B., Park, S. Y. & Mirkin, C. A. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8, 2341–2344 (2008).

    Article  CAS  Google Scholar 

  5. Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc. 128, 14020–14021 (2006).

    Article  CAS  Google Scholar 

  6. Xiong, H., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  7. Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005).

    Article  CAS  Google Scholar 

  8. Hazarika, P., Ceyhan, B. & Niemeyer, C. M. Reversible switching of DNA–gold nanoparticle aggregation. Angew. Chem. Int. Ed. 43, 6469–6471 (2004).

    Article  CAS  Google Scholar 

  9. Deng, Z. X., Tian, Y., Lee, S. H., Ribbe, A. E. & Mao, C. D. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44, 3582–3585 (2005).

    Article  CAS  Google Scholar 

  10. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  11. Claridge, S. A., Liang, H. Y. W., Basu, S. R., Frechet, J. M. J. & Alivisatos, A. P. Isolation of discrete nanoparticle–DNA conjugates for plasmonic applications. Nano Lett. 8, 1202–1206 (2008).

    Article  CAS  Google Scholar 

  12. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    Article  CAS  Google Scholar 

  13. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nano-clusters. Nature Mater. 8, 388–391 (2009).

    Article  CAS  Google Scholar 

  14. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  15. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  16. Barish, R. D., Rothemund, P. W. K. & Winfree, E. Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5, 2586–2592 (2005).

    Article  CAS  Google Scholar 

  17. Feng, L. P., Park, S. H., Reif, J. H. & Yan, H. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003).

    Article  CAS  Google Scholar 

  18. Sebba, D. S., Mock, J. J., Smith, D. R., LaBean, T. H. & Lazarides, A. A. Reconfigurable core–satellite nanoassemblies as molecularly-driven plasmon switches. Nano Lett. 8, 1803–1808 (2008).

    Article  CAS  Google Scholar 

  19. Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  CAS  Google Scholar 

  20. Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    Article  CAS  Google Scholar 

  21. Tian, Y. & Mao, C. D. Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    Article  CAS  Google Scholar 

  22. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  23. Sebba, D. S., LaBean, T. H. & Lazarides, A. A. Plasmon coupling in binary metal core–satellite assemblies. Appl. Phys. B 93, 69–78 (2008).

    Article  CAS  Google Scholar 

  24. Leunissen, M. J. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater. 8, 590–595 (2009).

    Article  CAS  Google Scholar 

  25. Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 6, 741–745 (2005).

    Article  Google Scholar 

  26. Park, S. J., Lazarides, A. A., Mirkin, C. A. & Letsinger, R. L. Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. Int. Ed. 40, 2909–2912 (2001).

    Article  CAS  Google Scholar 

  27. Tkachenko, A. V. Morphological diversity of DNA–colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  28. Valignat, M. P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005).

    Article  CAS  Google Scholar 

  29. Mao, C. & Chen, Y. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. Small 4, 2191–2194 (2008).

    Article  Google Scholar 

  30. Park, S. J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy Office of Science and Office of Basic Energy Sciences under contract no. DE-AC-02-98CH10886. The authors thank the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for use of their facilities. M.T.K. and W.B.S. acknowledge support by a Laboratory Directed Research and Development grant (07-025) from BNL. M.M.M. acknowledges a Goldhaber Distinguished Fellowship at BNL sponsored by Brookhaven Science Associates.

Author information

Authors and Affiliations

Authors

Contributions

M.M.M., D.N., W.B.S. and O.G. contributed to the design of the experiment and manuscript preparation. M.T.K. and W.B.S. designed and purified the DNA. M.M.M. performed synthesis and assembly experiments. M.M.M., D.N. and O.G. carried out SAXS experiments and data analysis. O.G. directed the research.

Corresponding author

Correspondence to Oleg Gang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maye, M., Kumara, M., Nykypanchuk, D. et al. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotech 5, 116–120 (2010). https://doi.org/10.1038/nnano.2009.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing