Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Droplet networks with incorporated protein diodes show collective properties

Abstract

Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers1,2,3,4,5 to form networks4,5,6. Droplet interface bilayers have been used for rapid screening of membrane proteins7,8 and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores9. Networks, meanwhile, have been used to form microscale batteries and to detect light4. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Droplet interface bilayer systems.
Figure 2: Rectification of the 7R–αHL pore.
Figure 3: Droplet networks containing WT–αHL and 7R–αHL pores.
Figure 4: Full-wave rectification in a four-droplet network.

Similar content being viewed by others

References

  1. Tsofina, L. M., Liberman, E. A. & Babakov, A. V. Production of bimolecular protein–lipid membranes in aqueous solution. Nature 212, 681–683 (1966).

    Article  CAS  Google Scholar 

  2. Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    Article  CAS  Google Scholar 

  3. Malmstadt, N., Nash, M. A., Purnell, R. F. & Schmidt, J. J. Automated formation of lipid–bilayer membranes in a microfluidic device. Nano Lett. 6, 1961–1965 (2006).

    Article  CAS  Google Scholar 

  4. Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    Article  CAS  Google Scholar 

  5. Bayley, H. et al. Droplet interface bilayers. Mol. BioSystems 4, 1191–1208 (2008).

    Article  CAS  Google Scholar 

  6. Hwang, W. L., Holden, M. A., White, S. & Bayley, H. Electrical analysis of protein pore insertion and blockade in droplet interface bilayer networks. J. Am. Chem. Soc. 129, 11854–11864 (2007).

    Article  CAS  Google Scholar 

  7. Syeda, R., Holden, M. A., Hwang, W. L. & Bayley, H. Rapid screening of blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008).

    Article  CAS  Google Scholar 

  8. Poulos, J. L. et al. Ion channel and toxin measurement using a high throughput lipid membrane platform. Biosens. Bioelectron. 24, 1806–1810 (2009).

    Article  CAS  Google Scholar 

  9. Hwang, W. L., Chen, M., Cronin, B., Holden, M. A. & Bayley, H. Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130, 5878–5879 (2008).

    Article  CAS  Google Scholar 

  10. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).

    Article  CAS  Google Scholar 

  11. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article  CAS  Google Scholar 

  12. Menestrina, G. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membrane Biol. 90, 177–190 (1986).

    Article  CAS  Google Scholar 

  13. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  14. Bayley, H. & Jayasinghe, L. Functional engineered channels and pores. Mol. Membrane Biol. 21, 209–220 (2004).

    Article  CAS  Google Scholar 

  15. Jung, Y., Cheley, S., Braha, O. & Bayley, H. The internal cavity of the staphylococcal α-hemolysin pore accommodates 175 exogenous amino acid residues. Biochemistry 44, 8919–8929 (2005).

    Article  CAS  Google Scholar 

  16. Wu, H.-C., Astier, Y., Maglia, G., Mikhailova, E. & Bayley, H. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129, 16142–16148 (2007).

    Article  CAS  Google Scholar 

  17. Alcaraz, A. et al. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. J. Phys. Chem. B 110, 21205–21209 (2006).

    Article  CAS  Google Scholar 

  18. Miedema, H. et al. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7, 2886–2891 (2007).

    Article  CAS  Google Scholar 

  19. Vlassiouk, I. & Siwy, Z. S. Nanofluidic diode. Nano Lett. 7, 552–556 (2007).

    Article  CAS  Google Scholar 

  20. He, Y. et al. Tuning transport properties of nanofluidic devices with local charge inversion. J. Am. Chem. Soc. 131, 5194–5202 (2009).

    Article  CAS  Google Scholar 

  21. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    Article  CAS  Google Scholar 

  22. Gijs, M. A. M. Will fluidic electronics take off? Nature Nanotech. 2, 268–270 (2007).

    Article  CAS  Google Scholar 

  23. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  CAS  Google Scholar 

  24. Craelius, W. The bionic man: restoring mobility. Science 295, 1018–1021 (2002).

    Article  CAS  Google Scholar 

  25. Donoghue, J. P. Bridging the brain to the world: a perspective on neural interface systems. Neuron 60, 511–521 (2008).

    Article  CAS  Google Scholar 

  26. Cheley, S., Braha, O., Lu, X., Conlan, S. & Bayley, H. A functional protein pore with a ‘retro’ transmembrane domain. Protein Sci. 8, 1257–1267 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a Royal Society Wolfson Research Merit Award to H.B., the Medical Research Council and the National Institutes of Health. W.L.H. was supported by a Rhodes Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

G.M. designed the protein diode and E.M., Q.L. and S.C. made the protein. G.M. performed the research on planar bilayers. W.L.H., A.J.H. and M.A.H. designed the DIB networks. A.J.H. and W.L.H. created and tested the DIB networks. G.M., A.J.H., W.L.H. and H.B. wrote the paper. H.B. directed the project.

Corresponding author

Correspondence to Hagan Bayley.

Supplementary information

Supplementary information

Supplementary information (PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglia, G., Heron, A., Hwang, W. et al. Droplet networks with incorporated protein diodes show collective properties. Nature Nanotech 4, 437–440 (2009). https://doi.org/10.1038/nnano.2009.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing