Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of electrical conductance through a self-assembled molecular layer

Abstract

The self-assembly of organic molecules on surfaces is a promising approach for the development of nanoelectronic devices1,2. Although a variety of strategies have been used to establish stable links between molecules2,3,4,5,6,7,8,9,10,11, little is known about the electrical conductance of these links. Extended electronic states, a prerequisite for good conductance, have been observed for molecules adsorbed on metal surfaces12,13,14,15,16. However, direct conductance measurements through a single layer of molecules are only possible if the molecules are adsorbed on a poorly conducting substrate. Here we use a nanoscale four-point probe17 to measure the conductivity of a self-assembled layer of cobalt phthalocyanine on a silver-terminated silicon surface as a function of thickness. For low thicknesses, the cobalt phthalocyanine molecules lie flat on the substrate, and their main effect is to reduce the conductivity of the substrate. At higher thicknesses, the cobalt phthalocyanine molecules stand up to form stacks and begin to conduct. These results connect the electronic structure and orientation of molecular monolayer and few-layer systems to their transport properties, and should aid in the rational design of future devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance, structure and model of CoPc.
Figure 2: Photoemission spectra from different CoPc systems.

Similar content being viewed by others

References

  1. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  2. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  3. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    Article  CAS  Google Scholar 

  4. Lin, N., Dmitriev, A., Weckesser, J., Barth, J. V. & Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew Chem. Int. Ed. 41, 4779–4783 (2002).

    Article  CAS  Google Scholar 

  5. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  Google Scholar 

  6. Barth, J. V., Weckesser, J., Lin, N., Dmitriev, A. & Kern, K. Supramolecular architectures and nanostructures at metal surfaces. Appl. Phys. A 76, 645–652 (2003).

    Article  CAS  Google Scholar 

  7. van Hameren, R. et al. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314, 1433–1436 (2006).

    Article  CAS  Google Scholar 

  8. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  9. Weigelt, S. et al. Covalent interlinking of aldehydes and amines on Au(111) under ultrahigh vacuum conditions. Angew Chem. Int. Ed. 46, 9227–9230 (2007).

    Article  CAS  Google Scholar 

  10. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–323 (2008).

    Article  CAS  Google Scholar 

  11. Veld, M. I., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun., 1536–1538 (2008).

  12. Netzer, F. P. Determination of structure and orientation of organic molecules on metal surfaces. Vacuum 41, 49–53 (1990).

    Article  CAS  Google Scholar 

  13. Graen, H. H., Neuber, M., Neumann, M., Odorfer, R. G. & Freund, H. J. Lateral interaction in ordered hydrocarbon overlayers — C–H band dispersion of adsorbed benzene. Europhys. Lett. 12, 173–177 (1990).

    Article  CAS  Google Scholar 

  14. Yang, W. et al. Band structure and Fermi surface of electron-doped C60 monolayers. Science 300, 303–307 (2003).

    Article  CAS  Google Scholar 

  15. Temirov, R., Soubatch, S., Luican, A. & Tautz, F. S. Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350–353 (2006).

    Article  CAS  Google Scholar 

  16. Yamane, H. et al. Electronic structure at highly ordered organic/metal interfaces: Pentacene on Cu(110). Phys. Rev. B 76, 165436 (2007).

    Article  Google Scholar 

  17. Gammelgaard, L. et al. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale. Appl. Phys. Lett. 93, 093104 (2008).

    Article  Google Scholar 

  18. Upward, M. D., Beton, P. H. & Moriarty, P. Adsorption of cobalt phthalocyanine on Ag terminated Si(111). Surf. Sci. 441, 21–25 (1999).

    Article  CAS  Google Scholar 

  19. Gustafsson, J. B., Zhang, H. M., Moons, E. & Johansson, L. S. O. Electron spectroscopy studies of PTCDA on Ag/Si(111)–√3 × √3. Phys. Rev. B 75, 155413 (2007).

    Article  Google Scholar 

  20. Gustafsson, J. B., Zhang, H. M. & Johansson, L. S. O. STM studies of thin PTCDA films on Ag/Si(111)–√3 × √3. Phys. Rev. B 75, 155414 (2007).

    Article  Google Scholar 

  21. Hofmann, Ph. & Wells, J. W. Surface-sensitive conductance measurements. J. Phys. Condens. Matter 21, 013003 (2009).

    Article  Google Scholar 

  22. Crain, J. N., Gallagher, M. C., McChesney, J. L., Bissen, M. & Himpsel, F. J. Doping of a surface band on Si(111)√3 × √3–Ag. Phys. Rev. B 72, 045312 (2005).

    Article  Google Scholar 

  23. Nakajima, Y., Uchida, G., Nagao, T. & Hasegawa, S. Two-dimensional adatom gas on the Si(111)–(√3 × √3)–Ag surface detected through changes in electrical conduction. Phys. Rev. B 54, 14134–14138 (1996).

    Article  CAS  Google Scholar 

  24. Gould, R. D. Structure and electrical conduction properties of phthalocyanine thin films. Coord. Chem. Rev. 156, 237–274 (1996).

    Article  CAS  Google Scholar 

  25. Craciun, M. F. et al. Electronic transport through electron-doped metal phthalocyanine materials. Adv. Mater. 18, 320–324 (2006).

    Article  CAS  Google Scholar 

  26. Wells, J. W., Kallehauge, J. F. & Hofmann, Ph. Surface-sensitive conductance measurements on clean and stepped semiconductor surfaces: Numerical simulations of four point probe measurements. Surf. Sci. 602, 1742–1749 (2008).

    Article  CAS  Google Scholar 

  27. Wells, J. W., Kallehauge, J. F. & Hofmann, Ph. Thermal switching of the electrical conductivity of Si(111)(√3 × √3)Ag due to a surface phase transition. J. Phys. Condens. Matter 19, 176008 (2007).

    Article  CAS  Google Scholar 

  28. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  29. Wu, S. et al. Molecular junctions based on aromatic coupling. Nature Nanotech. 3, 569–574 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with P. Petersen, M. Balslev, J. Hansen, T. Hansen and P. Bøggild. Ph.H. thanks the Leverhulme Foundation and the Danish National Research Council for supporting a stay at the University of Liverpool. K.S. acknowledges support from an Anne McLaren Fellowship from the University of Nottingham, and support from the European Community – Research Infrastructure Action under the FP6 ‘Structuring the European Research Area’ Programme (through the Integrated Infrastructure Initiative ‘Integrating Activity on Synchrotron and Free Electron Laser Science’). M.A.-T. received funding through NANOCAGE (MEST-CT-2004-506854), a Marie Curie Early Stage Training Network, part of EC-FP6. We thank F. Bondino, E. Magnano and A. Preobrajenski for their help during synchrotron measurements.

Author information

Authors and Affiliations

Authors

Contributions

F.S., J.W.W., S.N.B. and Ph.H. conceived the conductance experiments and F.S., K.H. and J.W.W. designed and performed these experiments and analysed the data. F.S., J.W.W., Z.S.L., K.S., M.A.-T., L.C.M., J.C.S. and E.W.P. performed the photoemission (PES) and NEXAFS experiments. K.S. analysed the NEXAFS and lithium-doping PES, F.S. the thickness-dependent PES. L.G. fabricated the nanoscale four-point probes. Ph.H., J.W.W. and K.S. co-wrote the initial draft of the paper. All authors discussed the results and significantly commented on the manuscript.

Corresponding author

Correspondence to Ph. Hofmann.

Supplementary information

Supplementary information

Supplementary information (PDF 955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, F., Wells, J., Handrup, K. et al. Direct measurement of electrical conductance through a self-assembled molecular layer. Nature Nanotech 4, 373–376 (2009). https://doi.org/10.1038/nnano.2009.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing