Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

How can ab initio simulations address risks in nanotech?

Discussions of the potential risks and hazards associated with nanomaterials and nanoparticles tend to focus on the need for further experiments. However, theoretical and computational nanoscientists could also contribute by making their calculations more relevant to research into this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density functional theory can be used to predict the fraction of (001) surface facets on polyhedral anatase (a form of titania) nanoparticles as a function of temperature and nanoparticle size.
Figure 2: Real nanoparticles interact with the gases, liquids and other nanoparticles surrounding them.
Figure 3: Number of CPU hours needed to simulate a periodic 64 atom [100] oriented slab of platinum using three approaches: molecular dynamics (MD) at 300 K, conjugate gradient methods (CG), and a fully hydrogen passivated version of the same slab using CG.

References

  1. Nel, A., Xia, T., Mädler, L. & Li, N. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  2. Barnard, A. S. Nature Mater. 5, 245–248 (2006).

    Article  CAS  Google Scholar 

  3. Dumortier, H. et al. Nano Lett. 6, 1522–1528 (2006).

    Article  CAS  Google Scholar 

  4. Magrez, A. et al. Nano Lett. 6, 1121–1125 (2006).

    Article  CAS  Google Scholar 

  5. Pulskamp, K., Diabaté, S. & Krug, H. F. Toxicol. Lett. 168, 58–74 (2007).

    Article  CAS  Google Scholar 

  6. Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Borm, P. J. A. Occup. Environ. Med. 61, 727–728 (2004).

    Article  CAS  Google Scholar 

  7. Lam, C. W., James, J. T., McCluskey, R., Arepalli, S. & Hunter, R. L. Crit. Rev. Toxicol. 36, 189–217 (2006).

    Article  CAS  Google Scholar 

  8. Hyung, H., Fortner, J. D., Hughes, J. B. & Kim, J.-H. Environ. Sci. Technol. 41, 179–184 (2007).

    Article  CAS  Google Scholar 

  9. Donaldson, K. et al. Toxicol. Sci. 92, 5–22 (2006).

    Article  CAS  Google Scholar 

  10. Hoet, P. H. M., Brüske-Hohlfeld, I. & Salata, O. V. J. Nanobiotech. 2, 12 (2004).

    Article  Google Scholar 

  11. Wörle-Knirsch, J. M., Pulskamp, K. & Krug, H. F. Nano Lett. 6, 1261–1268 (2006).

    Article  Google Scholar 

  12. Poland, C. A. et al. Nature Nanotech. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  13. Sayes, C. M. et al. Toxicol. Lett. 161, 135–142 (2006).

    Article  CAS  Google Scholar 

  14. Durgun, E. et al. Phys. Rev. B 67, 201401 (2003).

    Article  Google Scholar 

  15. National Science Foundation Societal Implicatons of Nanoscience and Nanotechnology (US Government, 2001); available at http://tinyurl.com/qmf2fw;.

  16. Nanotechnologies: A Preliminary Risk Analysis (European Commission, 2004); available at http://tinyurl.com/p3pw6l.

  17. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (The Royal Society, 2004); available at http://www.nanotec.org.uk/finalReport.htm.

  18. EuroNanoForum 2005: Nanotechnology and the Health of the Human Citizen in 2020 (European Commission, 2005); available at http://tinyurl.com/oxoyp6.

  19. National Nanotechnology Strategy Taskforce Options for a National Nanotechnology Strategy (Australian Government, 2006); available at http://tinyurl.com/re3leh.

  20. National Nanotechnology Innitiative Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials (US Government, 2006); available at http://tinyurl.com/oqownf.

  21. Hunt, G. & Mehta, M. D. (eds) Nanotechnology: Risks, Ethics and the Law (Earthscan, 2006).

    Google Scholar 

  22. Liu, G. et al. Langmuir 22, 9313–9321 (2006).

    Article  CAS  Google Scholar 

  23. Phala, N. S. & Van Steen, E. Gold Bull. 40, 150–153 (2007).

    Article  CAS  Google Scholar 

  24. Akdim, B., Hussain S. & Pachter, R. in Computational Science — ICCS 2008 Part II (eds Bubak, M., van Albada, G. D., Dongarra, J. & Sloot, P. M. A.) 353–359 (Springer, 2008).

    Book  Google Scholar 

  25. Vittadini, A., Casarin, M. & Selloni, A. Theor. Chem. Acc. 117, 663–671 (2007).

    Article  CAS  Google Scholar 

  26. Barnard, A. S. & Xu, H. ACS Nano 2, 2237–2242 (2008).

    Article  CAS  Google Scholar 

  27. Wong-Ekkabut, J. et al. Nature Nanotech. 3, 363–368 (2008).

    Article  CAS  Google Scholar 

  28. Rickman, J. M. & LeSar, R. Annu. Rev. Mater. Res. 32, 195–217 (2002).

    Article  CAS  Google Scholar 

  29. Zhang, H., Gilbert, B., Huang, F. & Banfield, J. F. Nature 424, 1025–1029 (2003).

    Article  CAS  Google Scholar 

  30. Barnard, A. S. J. Mater. Chem. 18, 813–815 (2008).

    Article  Google Scholar 

  31. Rieth, M. & Schommers, W. (eds) Handbook of Theoretical and Computational Nanotechnology (American Scientific, 2006).

    Google Scholar 

  32. Lakhtakia, A. Handbook of Nanotechnology: Nanometer Structure Theory, Modeling, and Simulation (American Society of Mechanical Engineers, 2004).

    Book  Google Scholar 

Download references

Acknowledgements

I acknowledge support from L'Oréal Australia and UNESCO, and thank George Smith for useful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, A. How can ab initio simulations address risks in nanotech?. Nature Nanotech 4, 332–335 (2009). https://doi.org/10.1038/nnano.2009.126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing