Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broadband all-photonic transduction of nanocantilevers

Abstract

Nanoelectromechanical systems1,2 based on cantilevers have consistently set records for sensitivity in measurements of displacement3, force4 and mass3,5,6 over the past decade. Continued progress will require the integration of efficient transduction on a chip so that nanoelectromechanical systems may be operated at higher speeds and sensitivities. Conventional electrical schemes have limited bandwidth7,8, and although optical methods9,10 are fast, they are subject to the diffraction limit. Here, we demonstrate the integration of nanocantilevers on a silicon photonic platform with a non-interferometric transduction scheme that avoids the diffraction limit by making use of near-field effects in optomechanical interactions11. The use of a non-interferometric method means that a coherent light source is not required, making the monolithic integration of optomechanical systems with on-chip light sources feasible. We further demonstrate optomechanical multiplexing of an array of ten nanocantilevers with a displacement sensitivity of 40 fm Hz−1/2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: End-to-end coupled waveguide nanocantilevers.
Figure 2: Non-interferometric detection scheme.
Figure 3: All-optical operation of the nanocantilevers.
Figure 4: Multiplexed integration of ten cantilevers in a photonic circuit.

References

  1. Roukes, M. Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (February 2001).

    Article  CAS  Google Scholar 

  2. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  3. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  4. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  5. Ilic, B. et al. Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95, 3694–3703 (2004).

    Article  CAS  Google Scholar 

  6. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  CAS  Google Scholar 

  7. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    Article  CAS  Google Scholar 

  8. Truitt, P. A., Hertzberg, J. B., Huang, C. C., Ekinci, K. L. & Schwab, K. C. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007).

    Article  CAS  Google Scholar 

  9. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. & Parpia, J. M. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999).

    Article  CAS  Google Scholar 

  10. Azak, N. O. et al. Nanomechanical displacement detection using fiber-optic interferometry. Appl. Phys. Lett. 91, 093112 (2007).

    Article  Google Scholar 

  11. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  CAS  Google Scholar 

  12. Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).

    Article  Google Scholar 

  13. Xu, Q. F., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  CAS  Google Scholar 

  14. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  CAS  Google Scholar 

  15. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon. 3, 59–63 (2009).

    Article  CAS  Google Scholar 

  16. Pruessner, M. W. et al. End-coupled optical waveguide MEMS devices in the indium phosphide material system. J. Micromech. Microeng. 16, 832–842 (2006).

    Article  CAS  Google Scholar 

  17. Maria, N., Dan, A. Z., Montserrat, C., Jorg, H. & Anja, B. Integrated optical readout for miniaturization of cantilever-based sensor system. Appl. Phys. Lett. 91, 103512 (2007).

    Article  Google Scholar 

  18. Zinoviev, K., Dominguez, C., Plaza, J. A., Busto, V. J. C. & Lechuga, L. M. A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces. J. Lightwave Technol. 24, 2132–2138 (2006).

    Article  Google Scholar 

  19. De Vlaminck, I. et al. Detection of nanomechanical motion by evanescent light wave coupling. Appl. Phys. Lett. 90, 233116 (2007).

    Article  Google Scholar 

  20. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  CAS  Google Scholar 

  21. Walters, D. A. et al. Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 67, 3583–3590 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  23. Ndieyira, J. W. et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nature Nanotech. 3, 691–696 (2008).

    Article  CAS  Google Scholar 

  24. Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

    Article  CAS  Google Scholar 

  25. Rugar, D., Mamin, H. J. & Guethner, P. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588–2590 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.X.T. acknowledges a career award from National Science Foundation (NSF). W.H.P.P. acknowledges support from the Alexander-von-Humboldt postdoctoral fellowship programmes. The authors thank M. Hochberg and T. Baehr-Jones for help with the design of the grating couplers. The devices were fabricated at Yale Center for Microelectronic Materials and Structures and the NSF sponsored Cornell Nanoscale Facility. Part of the funding was provided by a seed grant offered by Yale Institute for Nanoscience and Quantum Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Pernice, W. & Tang, H. Broadband all-photonic transduction of nanocantilevers. Nature Nanotech 4, 377–382 (2009). https://doi.org/10.1038/nnano.2009.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing