Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The crossover from two dimensions to one dimension in granular electronic materials

Abstract

Granular conductors1 are solids comprising densely packed nanoparticles, and have electrical properties that are determined by the size, composition and packing of the composite nanoparticles. The ability to control these properties in two- and three-dimensional granular conductors has made such systems appropriate for use as prototypes for investigating new physics1,2,3,4. However, the fabrication of strictly one-dimensional granular conductors remains challenging. Here, we describe a method for the assembly of nanoparticles into granular solids that can be tuned continuously from two to one dimension, and establish how electron transport evolves between these limits. We find that the energy barriers to transport increase in the one-dimensional limit, in both the variable-range-hopping (low-voltage) and sequential-tunnelling (high-voltage) regimes. Furthermore, in the sequential-tunnelling regime we find an unexpected relationship between the temperature and the voltage at which the conductance becomes appreciable — a relationship that appears peculiar to one-dimensional systems. These results are explained by extrapolating existing granular conductor theories to one dimension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembling QDs into one-dimensional and quasi-one-dimensional arrays.
Figure 2: Conductance measurement of the QD arrays.
Figure 3: Electrical properties of the QD arrays at high voltage.
Figure 4: Temperature dependence of the threshold voltage.

Similar content being viewed by others

References

  1. Beloborodov, I. S., Lopatin, A. V., Vinokur, V. M. & Efetov, K. B. Granular electronic systems. Rev. Mod. Phys. 79, 469–518 (2007).

    Article  CAS  Google Scholar 

  2. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  3. Markovich, G. et al. Architectonic quantum dot solids. Acc. Chem. Res. 32, 415–423 (1999).

    Article  CAS  Google Scholar 

  4. Fan, H. Y. et al. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304, 567–571 (2004).

    Article  CAS  Google Scholar 

  5. Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (quantum dots). Ann. Rev. Phys. Chem. 41, 477–496 (1990).

    Article  CAS  Google Scholar 

  6. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  7. Xia, Y. N. et al. One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  8. Remacle, F. & Levine, R. D. Quantum dots as chemical building blocks: Elementary theoretical considerations. ChemPhysChem 2, 20–36 (2001).

    Article  CAS  Google Scholar 

  9. Chung, S. W., Markovich, G. & Heath, J. R. Fabrication and alignment of wires in two dimensions. J. Phys. Chem. B 102, 6685–6687 (1998).

    Article  CAS  Google Scholar 

  10. Bezryadin, A., Westervelt, R. M. & Tinkham, M. Self-assembled chains of graphitized carbon nanoparticles. Appl. Phys. Lett. 74, 2699–2701 (1999).

    Article  CAS  Google Scholar 

  11. Elteto, K., Lin, X. M. & Jaeger, H. M. Electronic transport in quasi-one-dimensional arrays of gold nanocrystals. Phys. Rev. B 71, 205412 (2005).

    Article  Google Scholar 

  12. Tang, Z. Y. & Kotov, N. A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005).

    Article  CAS  Google Scholar 

  13. Huang, J. X., Tao, A. R., Connor, S., He, R. R. & Yang, P. D. A general method for assembling single colloidal particle lines. Nano Lett. 6, 524–529 (2006).

    Article  CAS  Google Scholar 

  14. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  15. Xia, Y. N., Yin, Y. D., Lu, Y. & McLellan, J. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater. 13, 907–918 (2003).

    Article  CAS  Google Scholar 

  16. Cui, Y. et al. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093–1098 (2004).

    Article  CAS  Google Scholar 

  17. Kraus, T. et al. Nanoparticle printing with single-particle resolution. Nature Nanotech. 2, 570–576 (2007).

    Article  CAS  Google Scholar 

  18. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Article  CAS  Google Scholar 

  19. Zeng, H. et al. Magnetotransport of magnetite nanoparticle arrays. Phys. Rev. B 73, 020402 (2006).

    Article  Google Scholar 

  20. Yakimov, A. I. et al. Long-range Coulomb interaction in arrays of self-assembled quantum dots. Phys. Rev. B 61, 10868–10876 (2000).

    Article  CAS  Google Scholar 

  21. Beverly, K. C., Sampaio, J. F. & Heath, J. R. Effects of size dispersion disorder on the charge transport in self-assembled 2-D Ag nanoparticle arrays. J. Phys. Chem. B 106, 2131–2135 (2002).

    Article  CAS  Google Scholar 

  22. Yu, D., Wang, C. J., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

    Article  Google Scholar 

  23. Zabet-Khosousi, A. & Dhirani, A. A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).

    Article  CAS  Google Scholar 

  24. Shklovskii, B. I. & Efros, A. L. in Electronic Properties of Doped Semiconductors (Springer, 1984).

    Book  Google Scholar 

  25. Remacle, F., Beverly, K. C., Heath, J. R. & Levine, R. D. Conductivity of 2-D Ag quantum dot arrays: Computational study of the role of size and packing disorder at low temperatures. J. Phys. Chem. B 106, 4116–4126 (2002).

    Article  CAS  Google Scholar 

  26. Levin, E. I., Nguen, V. L., Shklovskii, B. I. & Efros, A. L. Coulomb gap and hopping electric conduction. Computer simulation. Sov. Phys. JETP 65, 842–848 (1987).

    Google Scholar 

  27. Nguyen, V. D., Nguyen, V. L. & Dang, D. T. Variable range hopping in the Coulomb gap and gate screening in two dimensions. Phys. Lett. A 349, 404–410 (2006).

    Article  CAS  Google Scholar 

  28. Ancona, M. G. et al. Coulomb blockade in single-layer Au nanocluster films. Phys. Rev. B 64, 033408 (2001).

    Article  Google Scholar 

  29. Parthasarathy, R., Lin, X. M., Elteto, K., Rosenbaum, T. F. & Jaeger, H. M. Percolating through networks of random thresholds: Finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 92, 076801 (2004).

    Article  Google Scholar 

  30. Middleton, A. A. & Wingreen, N. S. Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 71, 3198–3201 (1993).

    Article  CAS  Google Scholar 

  31. Elteto, K., Antonyan, E. G., Nguyen, T. T. & Jaeger, H. M. Model for the onset of transport in systems with distributed thresholds for conduction. Phys. Rev. B 71, 064206 (2005).

    Article  Google Scholar 

  32. Reichhardt, C. & Reichhardt, C. J. O. Temperature and a.c. effects on charge transport in arrays of metallic dots. Phys. Rev. B 68, 165305 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peigen Cao and Yue Zou (Caltech) for helpful discussions and Xingchen Ye and C. B. Murray (University of Pennsylvania) for providing the gold quantum dots. This work was supported by the Department of Energy, the National Science Foundation, and the MARCO Center for Advanced Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Heath.

Supplementary information

Supplementary information

Supplementary information (PDF 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Qin, L. & Heath, J. The crossover from two dimensions to one dimension in granular electronic materials. Nature Nanotech 4, 368–372 (2009). https://doi.org/10.1038/nnano.2009.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing